Hybrid machine-learning and first-principles design for transition metal complexes

Jon Paul Janet ¹ Chenru Duan² Aditya Nandy² Heather Kulik ¹

¹Department of Chemical Engineering, Massachusetts Institute of Technology

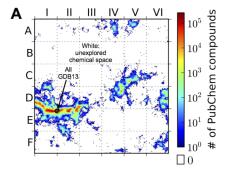
²Department of Chemistry, Massachusetts Institute of Technology

Foundational & Applied Data Science for Molecular and Material Science & Engineering

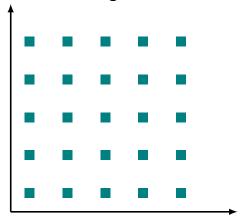
How can we design new materials using computers?

The space of possible chemistries is incredibly vast, with $\mathcal{O}(10^{60})$ small organic molecules.

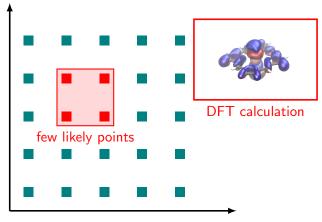
All potentially undiscovered medicines, catalysts and materials are somewhere, out in this huge space.



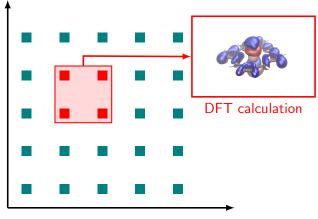
Virshup et al., J. Am. Chem. Soc., 135(19): 7296-7303, 2013.



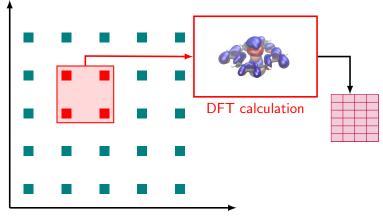
Chemical Design Space C_f



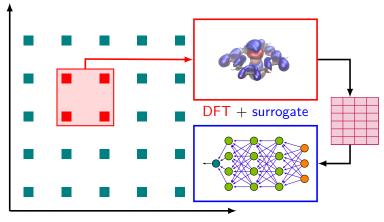
Chemical Design Space C_f



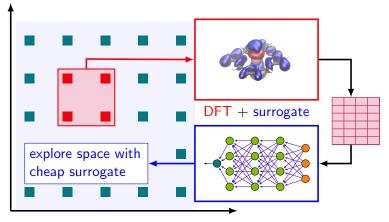
Chemical Design Space C_f



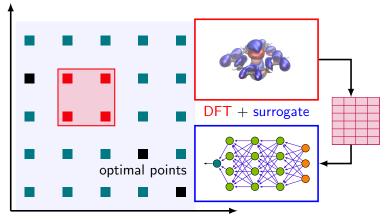
Chemical Design Space C_f



Chemical Design Space C_f

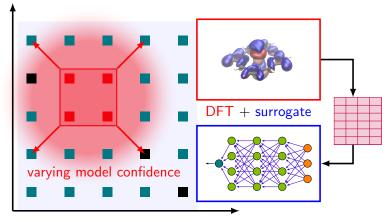


Chemical Design Space C_f



Chemical Design Space C_f

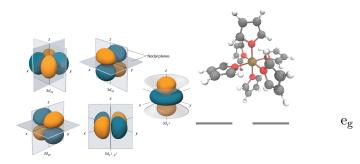
Introduction



Chemical Design Space C_f

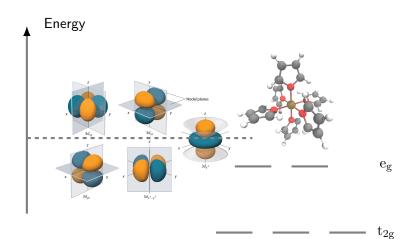
Introduction 0000

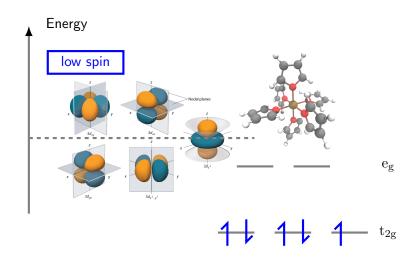
Introduction 0000

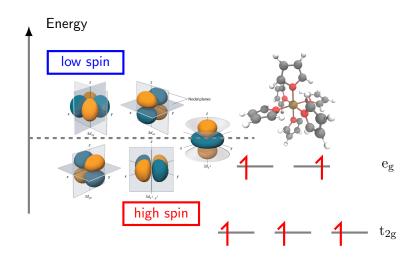


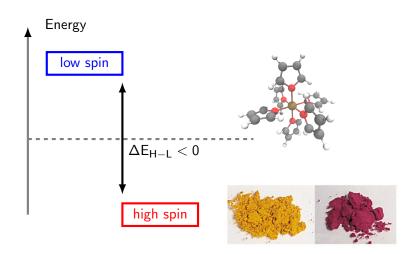
 t_{2g}

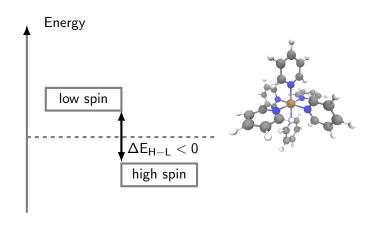
Introduction 0000







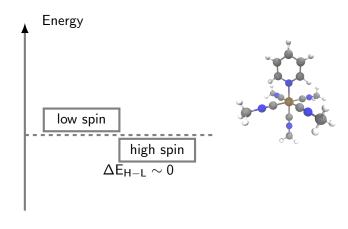




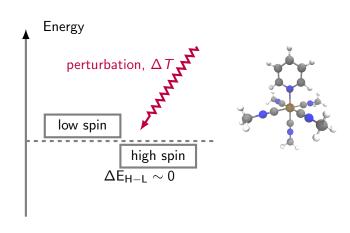
Introduction 0000



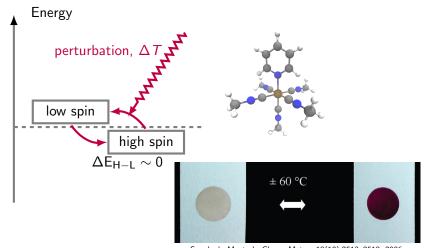
Introduction 0000



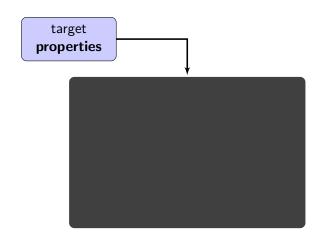
Introduction 0000

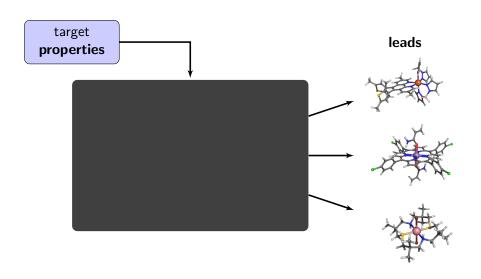


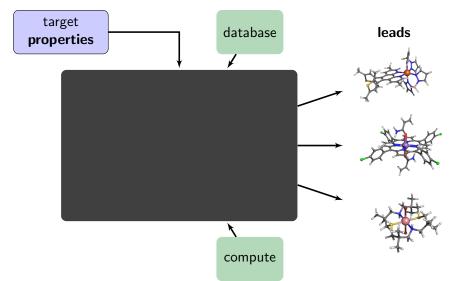
Introduction 000

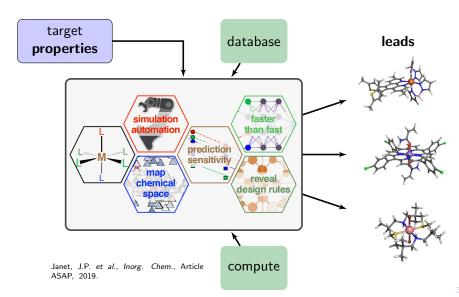


target properties

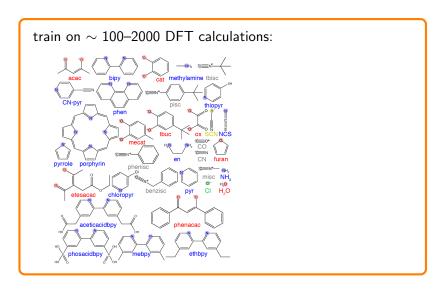


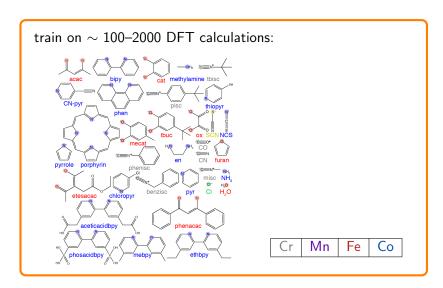


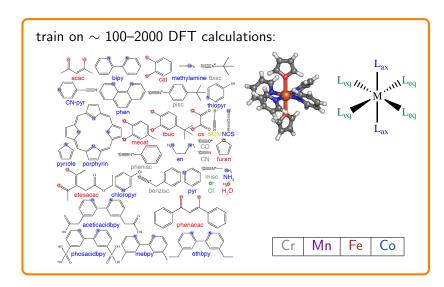


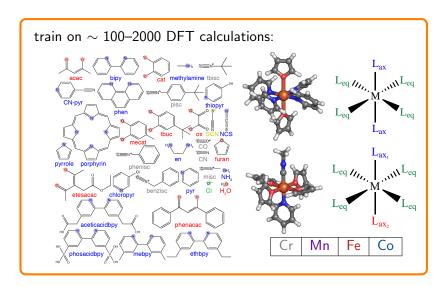


train on \sim 100–2000 DFT calculations:



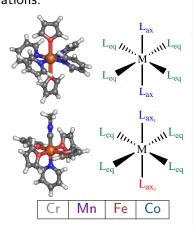


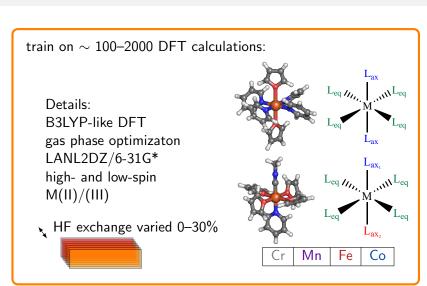




train on \sim 100–2000 DFT calculations:

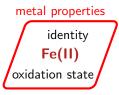
Details: B3LYP-like DFT gas phase optimizaton LANL2DZ/6-31G* high- and low-spin M(II)/(III)

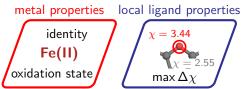




Modeling of TM complexes with heuristic representations

First attempt using simple features inspired by inorganic chem:



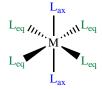


First attempt using simple features inspired by inorganic chem:

mixed continous discrete ligand-centered: MCDL-25

First attempt using simple features inspired by inorganic chem:

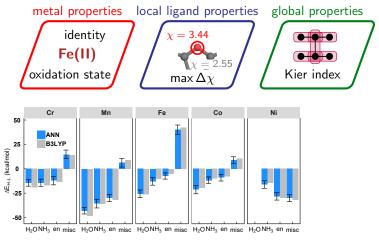
mixed continous discrete ligand-centered: MCDL-25



First attempt using simple features inspired by inorganic chem:

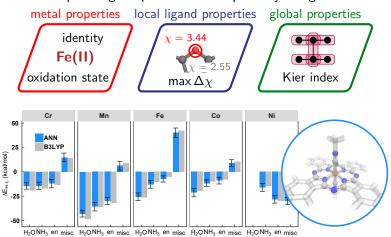
fully-connected 2-layer ANN, dropout regularization



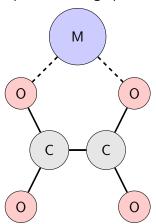


Janet, J.P. and Kulik, H.J., Chem. Sci., 8:5137-5152, 2017.

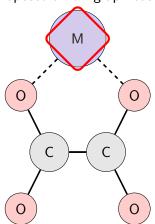
First attempt using simple features inspired by inorganic chem:



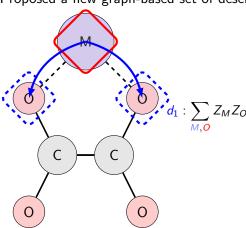
Janet, J.P. and Kulik, H.J., Chem. Sci., 8:5137-5152, 2017.



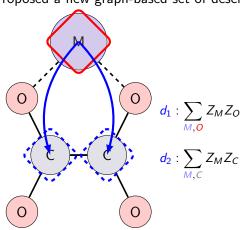
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



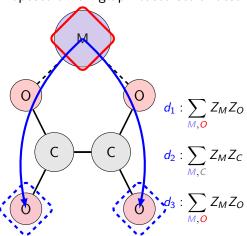
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



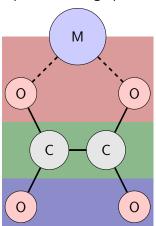
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



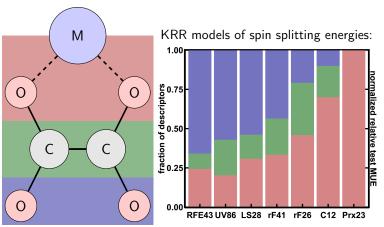
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



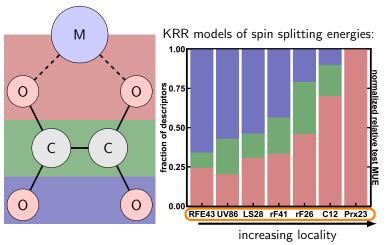
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



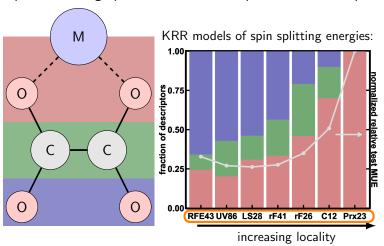
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



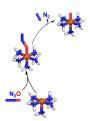
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



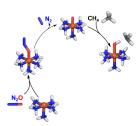
¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



¹Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.

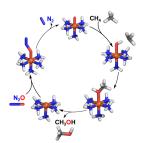


Can we apply the same ideas to cheaply predict catalytically-relevant properties?

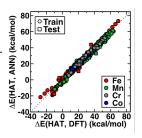


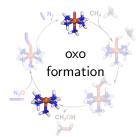
Nandy, A. et al., in preparation.

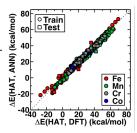
Can we apply the same ideas to cheaply predict catalytically-relevant properties?

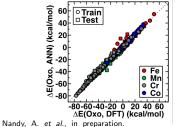


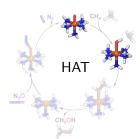
Nandy, A. et al., in preparation.

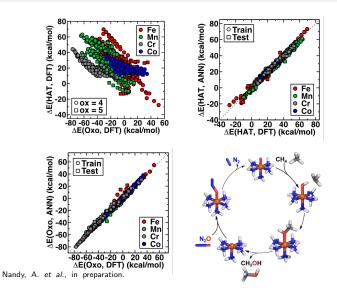










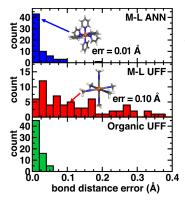


Machine learning job initialization

Metal-ligand bonding is difficult to resolve without QM:

Machine learning job initialization

Metal-ligand bonding is difficult to resolve without QM:

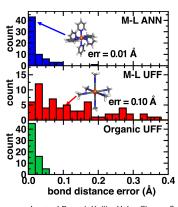


we can predict bond lengths

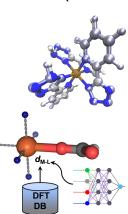
Janet, J.P. and Kulik, H.J., Chem. Sci., 8:5137–5152, 2017.
Janet, J.P. et al., Ind. Eng. Chem. Res., 56(17):4898–4910, 2017.
Janet, J.P. et al., Inorg. Chem., Article ASAP, 2019.

Machine learning job initialization

Metal-ligand bonding is difficult to resolve without QM:



we can predict bond lengths and use this to intialize new calculations

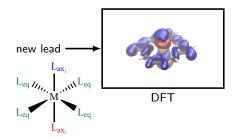


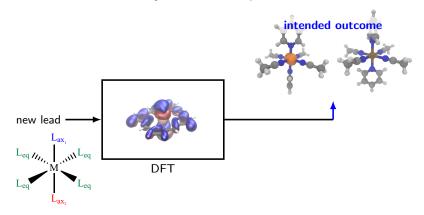
Janet, J.P. and Kulik, H.J., Chem. Sci., 8:5137-5152, 2017. Janet, J.P. et al., Ind. Eng. Chem. Res., 56(17):4898-4910, 2017. Janet, J.P. et al., Inorg. Chem., Article ASAP, 2019.

However, even with this, DFT job failure is a frequent issue:

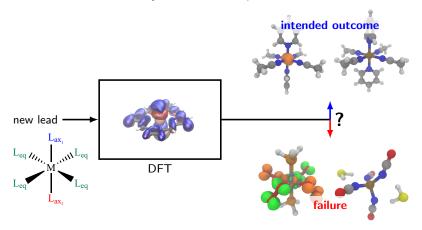
new lead

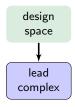
Beyond prediction: live job management

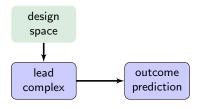




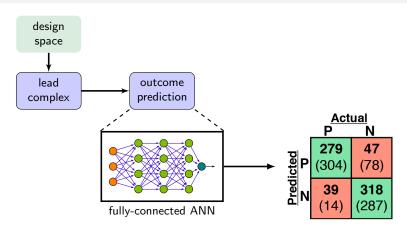
Beyond prediction: live job management

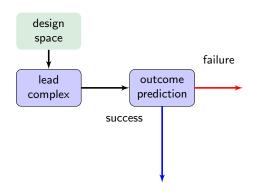


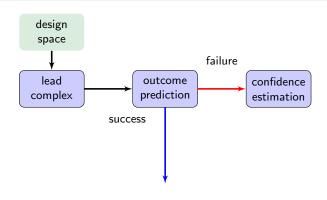


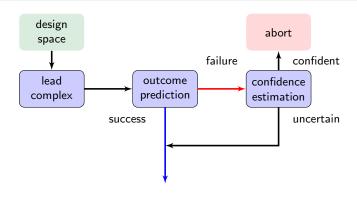


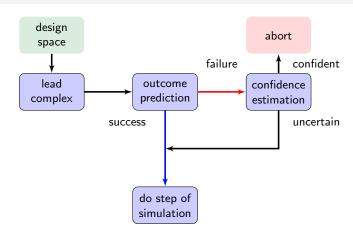
Beyond prediction: live job management

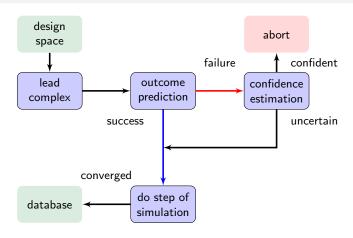


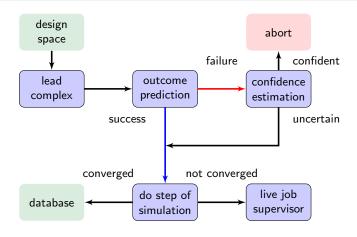


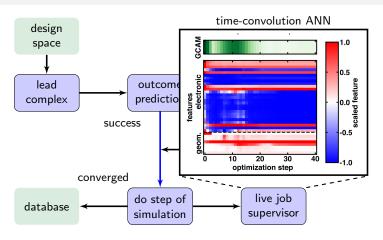


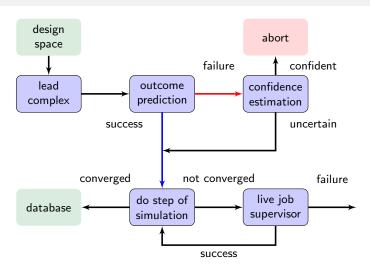




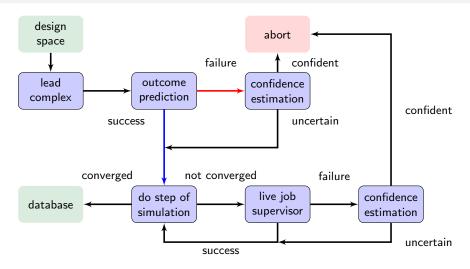




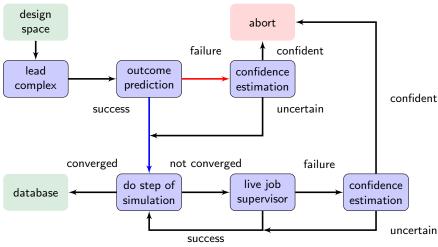




Duan, C., Janet, J.P. et al., J. Chem. Theory. Comp., 15(4):2331-2345, 2019.



Duan, C., Janet, J.P. et al., J. Chem. Theory. Comp., 15(4):2331-2345, 2019.



This leads to about 40% time savings and can abort almost all failures.

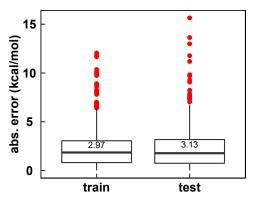
Duan, C., Janet, J.P. et al., J. Chem. Theory. Comp., 15(4):2331—2345, 2019.

Test-set performance is not necessarily a good metric for general transferability¹:

¹:Janet, J.P., and Kulik, H.J., *Chem. Sci.*, 8:5137–5152, 2017.

Model transferability

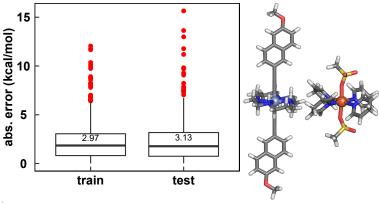
Test-set performance is not necessarily a good metric for general transferability¹:



¹:Janet, J.P., and Kulik, H.J., Chem. Sci., 8:5137-5152, 2017.

Model transferability

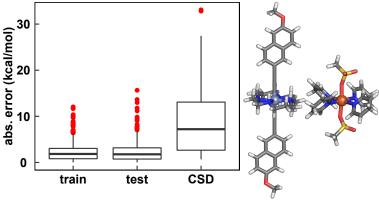
Test-set performance is not necessarily a good metric for general transferability¹:



¹:Janet, J.P., and Kulik, H.J., Chem. Sci., 8:5137-5152, 2017.

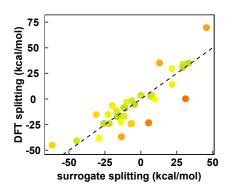
Model transferability

Test-set performance is not necessarily a good metric for general transferability¹:

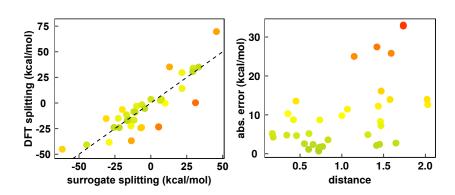


¹:Janet, J.P., and Kulik, H.J., Chem. Sci., 8:5137-5152, 2017.

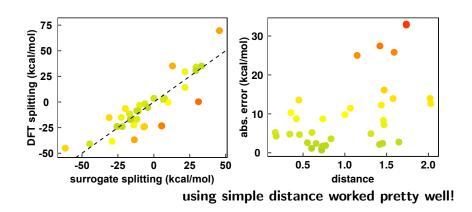
System-specific generalization



System-specific generalization



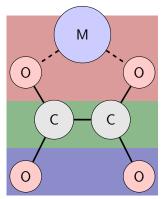
System-specific generalization



Results are worse for more complex representations¹:

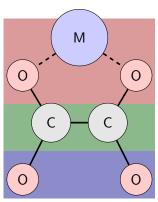
¹ Janet, J.P., and Kulik, H.J., J. Phys. Chem. A 121(46):8939-8954, 2017.

Results are worse for more complex representations¹:



¹ Janet, J.P., and Kulik, H.J., J. Phys. Chem. A 121(46):8939-8954, 2017.

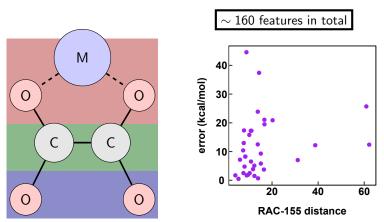
Results are worse for more complex representations¹:



 \sim 160 features in total

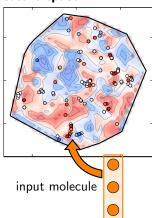
Janet, J.P., and Kulik, H.J., J. Phys. Chem. A 121(46):8939-8954, 2017.

Results are worse for more complex representations¹:

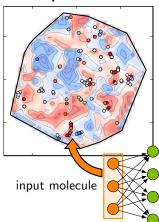


¹ Janet, J.P., and Kulik, H.J., J. Phys. Chem. A 121(46):8939-8954, 2017.

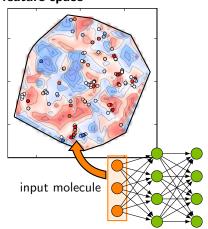
feature space

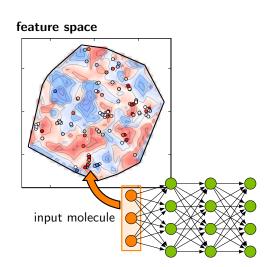


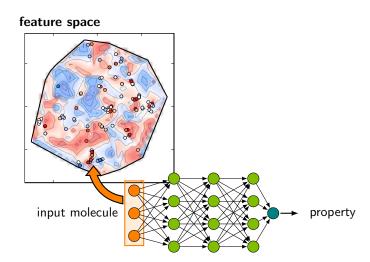
feature space

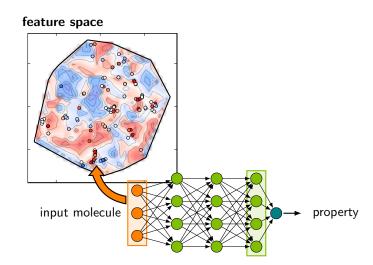


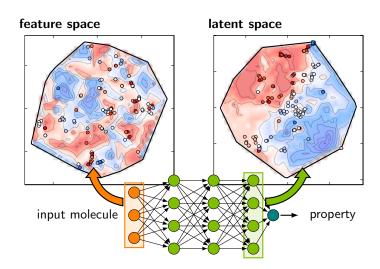
feature space

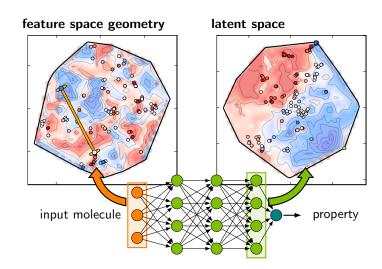


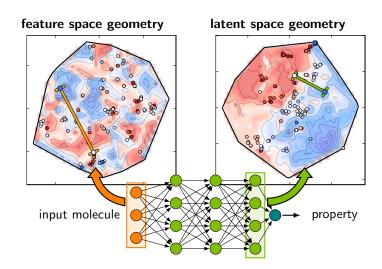












Other UQ metrics

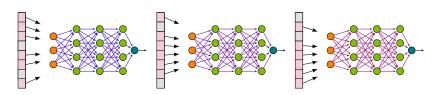
1) Data-sampling ensembles:

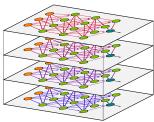
Other UQ metrics

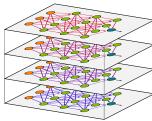
1) Data-sampling ensembles:

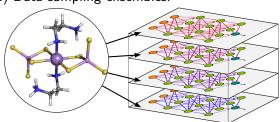
Other UQ metrics

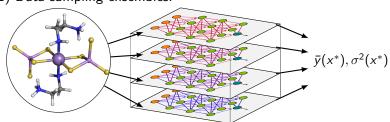
1) Data-sampling ensembles:



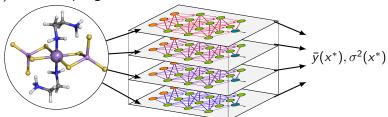








1) Data-sampling ensembles:

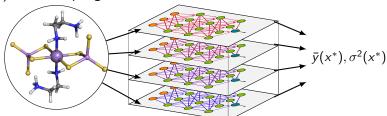


2) Monte Carlo dropout¹:

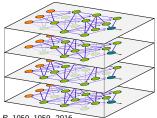
¹:Gal, Y. and Ghahramani, Z., ICMLR, 1050-1059, 2016.

•

1) Data-sampling ensembles:

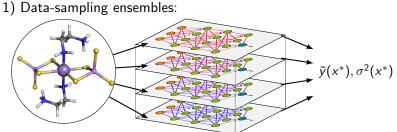


2) Monte Carlo dropout¹:

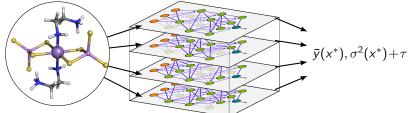


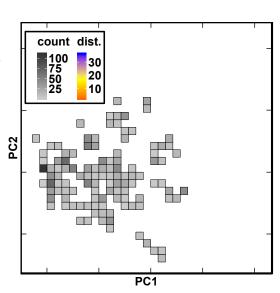
¹:Gal, Y. and Ghahramani, Z., ICMLR, 1050-1059, 2016.

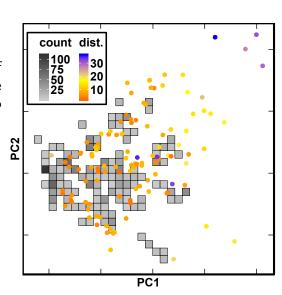
1) 5

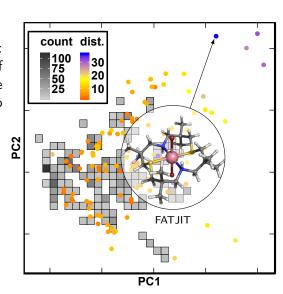


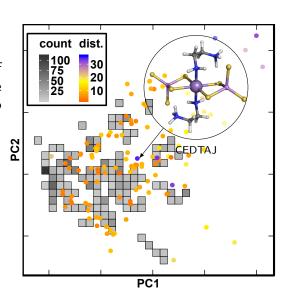
2) Monte Carlo dropout¹:





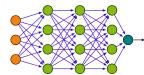


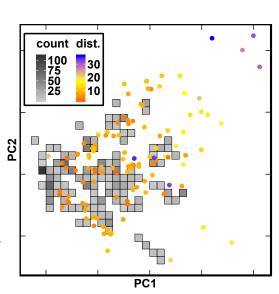




'Out-of-distribution' test: spin-splitting energies of 116 structures from the CSD, from training-like to very different.

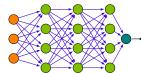
Train 3-layer fully connected ANN on 1900 DFT results on simple ligands:

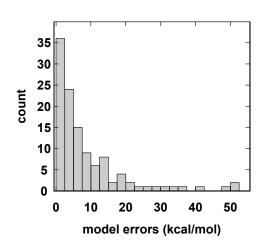




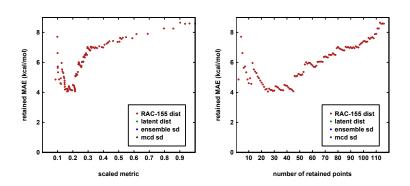
'Out-of-distribution' test: spin-splitting energies of 116 structures from the CSD, from training-like to very different.

Train 3-layer fully connected ANN on 1900 DFT results on simple ligands:





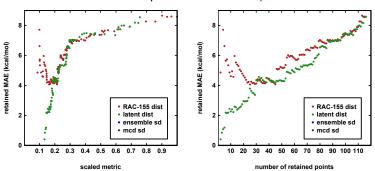
Make a comparison of discriminative power¹:



Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

Make a comparison of discriminative power¹:

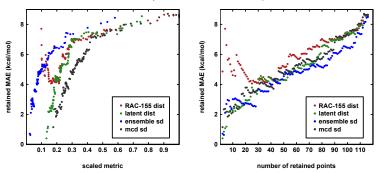
latent distances are superior to feature space distances



Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

Make a comparison of discriminative power¹:

latent distances are superior to feature space distances

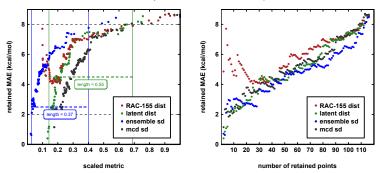


comparable with ensembles and mc dropout

¹ Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

Make a comparison of discriminative power¹:

latent distances are superior to feature space distances

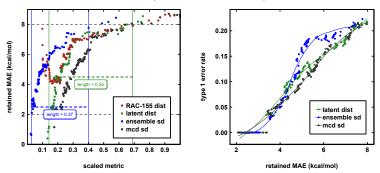


comparable with ensembles and mc dropout stability is important

¹ Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

Make a comparison of discriminative power¹:

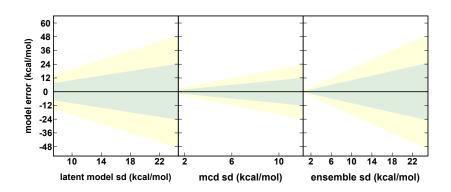
latent distances are superior to feature space distances



comparable with ensembles and mc dropout

Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

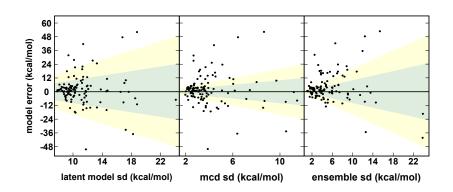
$$\varepsilon(d) \sim \mathcal{N}\left(0, \sigma_1^2 + d\sigma_2^2\right)$$



¹ Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

How do these distributions compare?

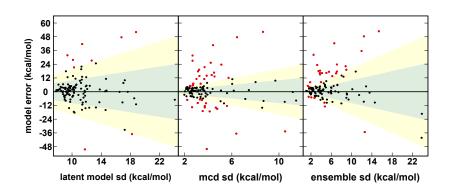
$$\varepsilon(d) \sim \mathcal{N}\left(0, \sigma_1^2 + d\sigma_2^2\right)$$



¹ Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

How do these distributions compare?

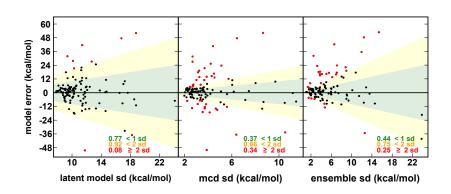
$$\varepsilon(d) \sim \mathcal{N}\left(0, \sigma_1^2 + d\sigma_2^2\right)$$



Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

How do these distributions compare?

$$\varepsilon(d) \sim \mathcal{N}\left(0, \sigma_1^2 + d\sigma_2^2\right)$$



Janet, J.P., et al., ChemRxiv, 10.26434/chemrxiv.7900277.v1.

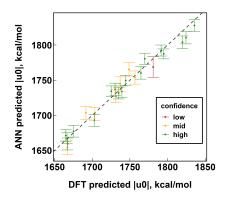
QM9 results

Similar error control can be obtained for QM9 benchmark organic data¹. We train on 5% and make predictions on 95%.

¹ Ramakrishnan, R., et al., Sci. Data, 1, 2014.

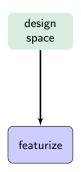
QM9 results

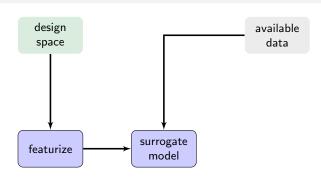
Similar error control can be obtained for QM9 benchmark organic data¹. We train on 5% and make predictions on 95%.

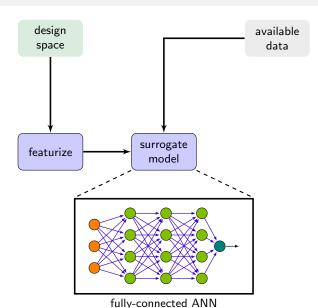


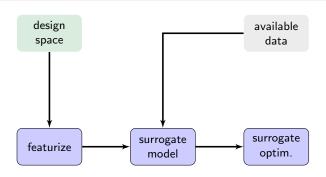
¹ Ramakrishnan, R., et al., Sci. Data, 1, 2014.

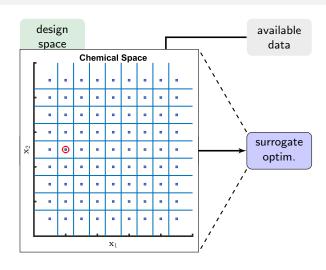
design space

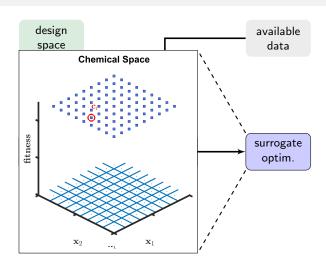


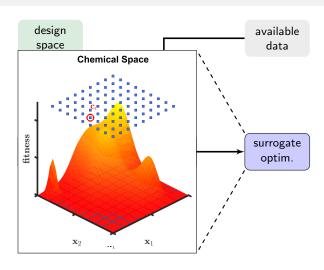


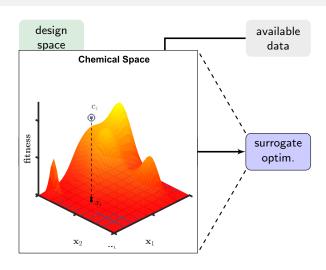


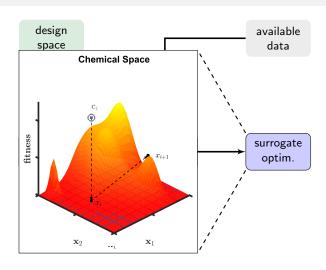


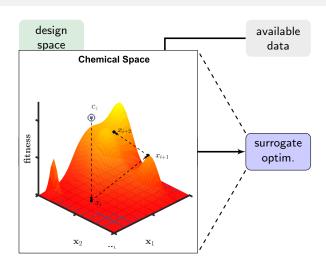


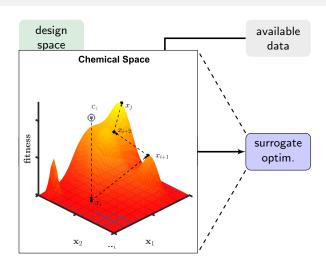




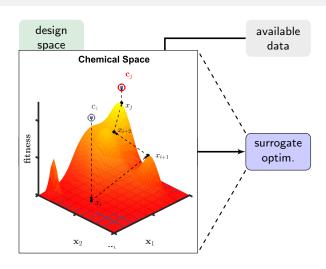




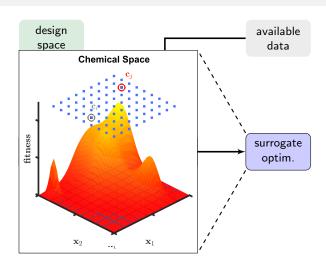




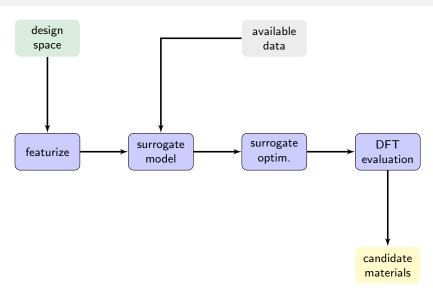
candidate materials

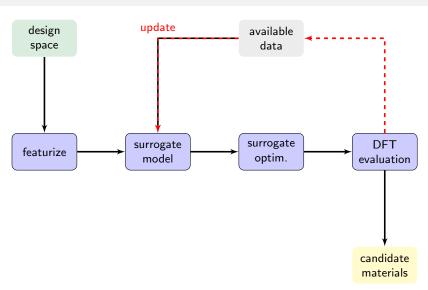


candidate materials



candidate materials





Can we use the ANN model to find new spin-crossover materials, i.e. $\Delta E_{H-L} = 0$?

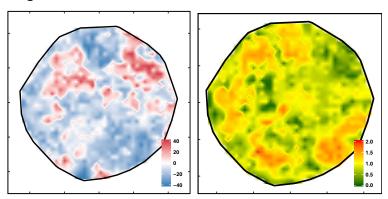
³Janet, J.P., Chan, L. and Kulik, H.J., *J. Phys. Chem. Lett.*, 9(5):1064–1071, 2018.

Can we use the ANN model to find new spin-crossover materials, i.e. $\Delta E_{H-L}=0?$ Define an expanded space with <2% training coverage 3

³Janet, J.P., Chan, L. and Kulik, H.J., *J. Phys. Chem. Lett.*, 9(5):1064–1071, 2018.

Can we use these models for discovery?

Can we use the ANN model to find new spin-crossover materials, i.e. $\Delta E_{H-L}=0$? Define an expanded space with <2% training coverage³

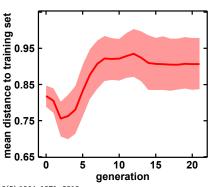


³Janet, J.P., Chan, L. and Kulik, H.J., *J. Phys. Chem. Lett.*, 9(5):1064–1071, 2018.

UQ and evolutionary design

We developed an evolutionary algorithm that combines uncertainty estimation with property prediction:

At high distances, surrogate is unreliable. At low distance, data is weakly informative.



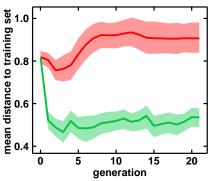
UQ and evolutionary design

We developed an evolutionary algorithm that combines uncertainty estimation with property prediction:

At high distances, surrogate is unreliable. At low distance, data is weakly informative.

We can adaptively penalize high distance regions:

$$\begin{array}{l} F_{s+d}(x) & := \\ \exp\left[-\left(\frac{\Delta E_{\text{H-L}}(x)}{P\Delta E_{\text{H-L}}}\right)^2\right] \exp\left[-\left(\frac{d(x)}{Pd}\right)^2\right] \end{array}$$



Janet, J.P., Chan, L. and Kulik, H.J., J. Phys. Chem. Lett., 9(5):1064-1071, 2018.

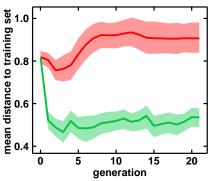
UQ and evolutionary design

We developed an evolutionary algorithm that combines uncertainty estimation with property prediction:

At high distances, surrogate is unreliable. At low distance, data is weakly informative.

We can adaptively penalize high distance regions:

$$\begin{array}{l} F_{s+d}(x) & := \\ \exp\left[-\left(\frac{\Delta E_{\text{H-L}}(x)}{P\Delta E_{\text{H-L}}}\right)^2\right] \exp\left[-\left(\frac{d(x)}{Pd}\right)^2\right] \end{array}$$

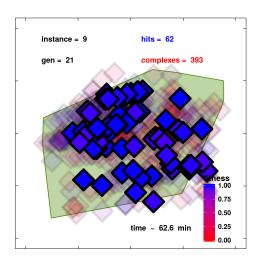


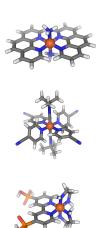
Janet, J.P., Chan, L. and Kulik, H.J., J. Phys. Chem. Lett., 9(5):1064-1071, 2018.

Demonstration

Demonstration

Demonstration

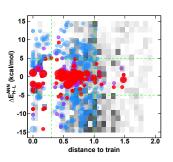




Discovery results

Spin splitting design:

- We combine ANN predictions and uncertainties using an evolutionary algorithm.
- Error control allows 60% of leads to be validated with DFT.¹



¹ Janet, J.P., Chan, L. and Kulik, H.J., *J. Phys. Chem. Lett.*, 9(5):1064–1071, 2018.

Discovery results

Spin splitting design:

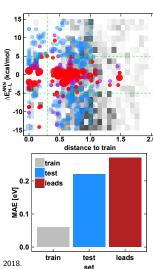
We combine ANN predictions and uncertainties using an evolutionary algorithm.

Error control allows 60% of leads to be validated with DFT.¹

Frontier orbital properties:

This approach also works for frontier orbtial design², obtaining average HOMO of 3.98 eV compared to target 4.00 eV.

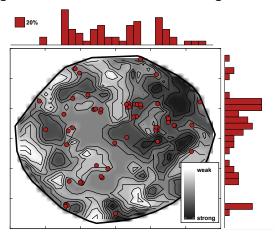
¹ Janet, J.P., Chan, L. and Kulik, H.J., *J. Phys. Chem. Lett.*, 9(5):1064–1071, 2018.



Because we have trained our models on varying with exact exchange, we can tune functionals for design:

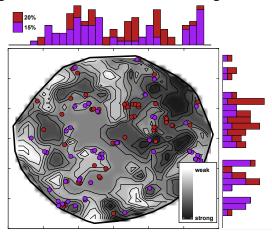
Hedging against DFT uncertainty

Because we have trained our models on varying with exact exchange, we can tune functionals for design:



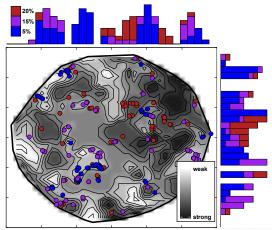
Hedging against DFT uncertainty

Because we have trained our models on varying with exact exchange, we can tune functionals for design:



Hedging against DFT uncertainty

Because we have trained our models on varying with exact exchange, we can tune functionals for design:



Awkward roommates or match made in heaven?

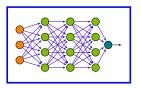
physics-driven

slow, accurate (?)

Awkward roommates or match made in heaven?

physics-driven

data-driven



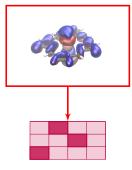
slow, accurate (?)

fast, uncertainty-aware

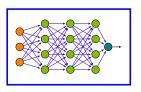
Awkward roommates or match made in heaven?

physics-driven

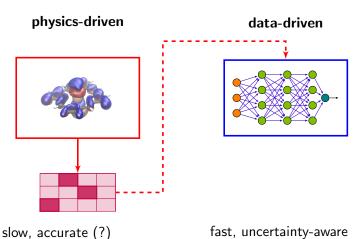
data-driven

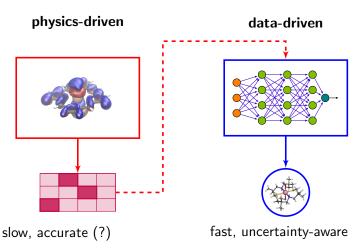


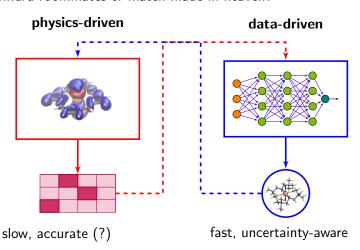
slow, accurate (?)

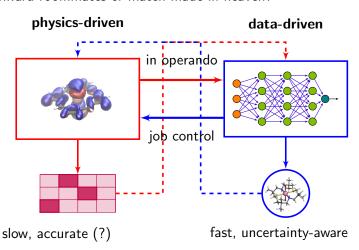


fast, uncertainty-aware









Thanks to the Kulik group and funding partners:

