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Something interesting happened at the CASP 13 protein folding
prediction competition in Mexico in December 2018...

A new entry, competing in their first CASP, dominated in the
no-information category, winning 25 out of 43 tests.The next
best team won 3 of the remaining tests.

The same team ran away with the competition in CASP 14 in

2020, leading CASP co-founder John Moult to conclude “In some
sense the problem is solved”
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The team was Alphafold, by & DeepMind,

“It is not that machines are going to replace chemists. It's that the
chemists who use machines will replace those that do not”
-Derek Lowe, In the Pipeline

This is probably a bit strong, but all scientists generate data as a
product. ML provides new, powerful ways to exploit this
information.
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Some areas of high current interest:

m  Neural network potentials -

quantum accuracy, force field ™ g 20 Ty T L e Py L
cost. Reactive dynamics on :
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m  Synthesis planning and ‘
optimization. Fully B I W T AT KV
automated chemistry! ’ \ \

m  Generative models. Designing
new drugs directly into the
pocket, de novo!

Ragoza, M., et al., arXiv:2010.08687v3, 2020
Guo, J., et al., J .Cheminform., 13(89), 2021

Arcidiacono, M. & Koes, D.R., et al., https://arxiv.org/abs/2109.15308, 2021
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scalable energy storage:

m  good ion stability (compared
to organics)

m  good range of redox
potentials available

m  solubility is an issue!

Ecel =05 X AGgopy x C x nx F

Perry, M.L. and Adam, Z., J. Electrochem. Soc.,
163(1):A5064-A5067, 2018. .
@ We need complexes that have high

redox potential and good solubility
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It is increasingly important to be literate about ML concepts.
Even if/when the hype lessens, ML tools will continue to have
a large impact on our science.

Phrase problem Select or
as a machine Cé'aule:t generate Necessary
learning task features preparation

[Choose or develop Choose metrics, ] The "machine
algorithm conduct experiments : P T
learning contribution /‘\V L}

Interpret Publicize results to Persuade users to
results relevant user community adopt technique

IMPACT

Wagstaff, K., “Machine Learning that Matters”, ICML 29, 16(7):529-536, 2012

Conversely, there is a growing need for domain experts to en-
gage and derive impact from advances in ML, and you have
a lot of value to contribute to interpreting and exploiting the

results.
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