Case Study

Machine Learning in Chemistry now and in the future

Jon Paul Janet 1

¹Medicinal Chemistry, Early CVRM, R&D BioPharmaceuticals, AstraZeneca, 431 83 Mölndal, Sweden

02.12.2021

Table of Contents

- 1 Introduction
- - Introduction
 - Multiobjective design with ML
 - Conclusions
- 3 Machine learning in chemistry
 - Outline
 - Chapter highlights

Rise of the (chemical) machines

Something interesting happened at the CASP 13 protein folding prediction competition in Mexico in December 2018...

Something interesting happened at the **CASP 13** protein folding prediction competition in Mexico in December 2018...

Machine learning in chemistry

A new entry, competing in their first CASP, dominated in the no-information category, winning 25 out of 43 tests.

Something interesting happened at the **CASP 13** protein folding prediction competition in Mexico in December 2018...

Machine learning in chemistry

A new entry, competing in their first CASP, dominated in the no-information category, winning 25 out of 43 tests. The next best team won 3 of the remaining tests.

Something interesting happened at the **CASP 13** protein folding prediction competition in Mexico in December 2018...

Machine learning in chemistry

A new entry, competing in their first CASP, dominated in the no-information category, winning 25 out of 43 tests. The next best team won 3 of the remaining tests.

The same team ran away with the competition in **CASP 14** in 2020, leading CASP co-founder John Moult to conclude "In some sense the problem is solved"

Rise of the (chemical) machines

The team was Alphafold, by ODeepMind.

Introduction

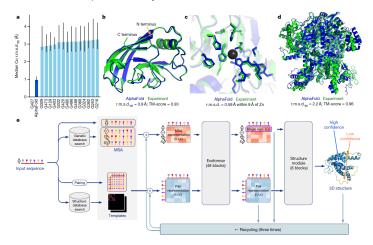
000000

The team was Alphafold, by ODeepMind.

Median Free-Modelling Accuracy

Case Study

The team was Alphafold, by OeepMind



The team was Alphafold, by OeepMind.

"It is not that machines are going to replace chemists. It's that the chemists who use machines will replace those that do not" -Derek Lowe, In the Pipeline

The team was Alphafold, by OeepMind.

"It is not that machines are going to replace chemists. It's that the chemists who use machines will replace those that do not" -Derek Lowe, In the Pipeline

Machine learning in chemistry

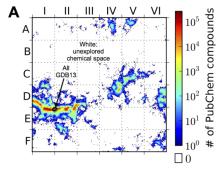
This is probably a bit strong, but all scientists generate data as a product. ML provides new, powerful ways to exploit this information.

Motivation: chemical discovery

Why is ML transforming chemisty?

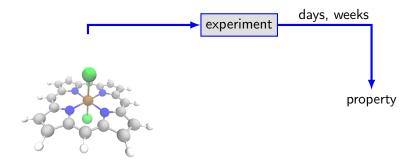
possible The space of chemistries is incredibly vast, with $\mathcal{O}(10^{60})$ small organic molecules.

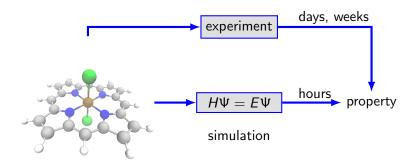
All potentially undiscovered medicines, catalysts and materials are somewhere, out in this huge space.

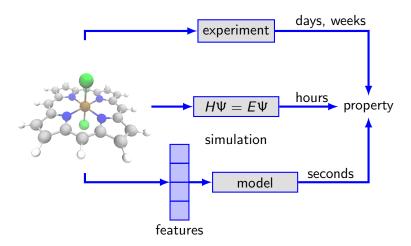


Virshup et al., J. Am. Chem. Soc., 135(19): 7296-7303, 2013.

property







Machine learning in chemistry

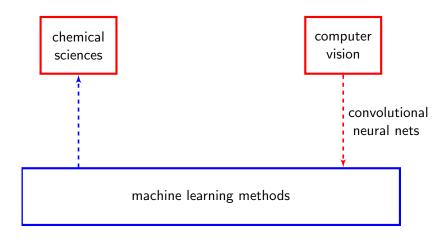
machine learning methods

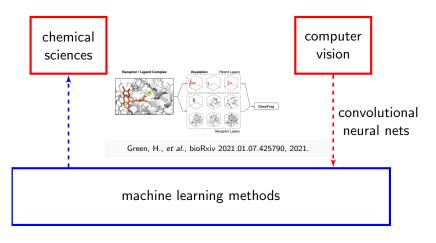
chemical sciences

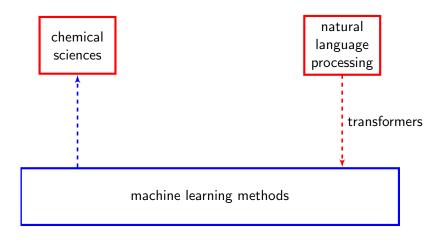
computer vision

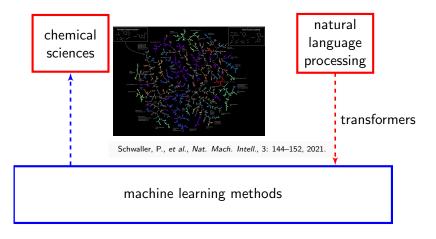
Machine learning in chemistry

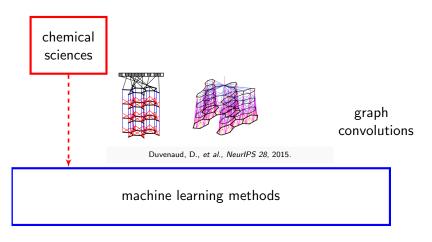
machine learning methods

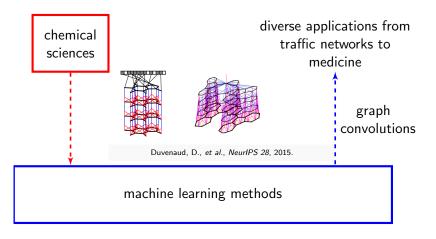










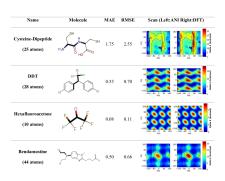


Case Study

Some areas of high current interest:

Some areas of high current interest:

Neural network potentials quantum accuracy, force field cost. Reactive dynamics on your laptop!



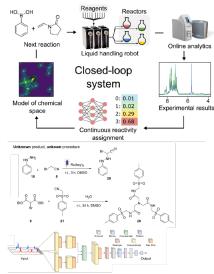
Devereux, C., et al., J. Chem. Theory Comput., 16(7):4192-4202, 2020

Some areas of high current interest:

Introduction

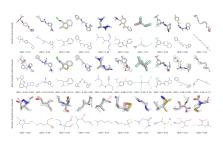
000000

- Neural network potentials quantum accuracy, force field cost. Reactive dynamics on your laptop!
- Synthesis planning and optimization. Fully automated chemistry!



Some areas of high current interest:

- Neural network potentials quantum accuracy, force field cost. Reactive dynamics on your laptop!
- Synthesis planning and optimization. Fully automated chemistry!
- Generative models. Designing new drugs directly into the pocket, de novo!



Ragoza, M., et al., arXiv:2010.08687v3, 2020 Guo, J., et al., J. Cheminform., 13(89), 2021

Arcidiacono, M. & Koes, D.R., et al., https://arxiv.org/abs/2109.15308, 2021

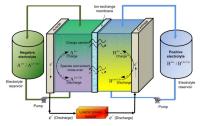
Table of Contents

- 2 Case Study
 - Introduction
 - Multiobjective design with ML
 - Conclusions
- 3 Machine learning in chemistry
 - Outline
 - Chapter highlights

Redox flow batteries (RFBs) are a promising option for scalable energy storage:

Redox flow batteries

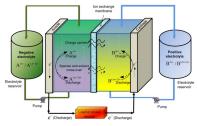
Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064-A5067, 2018.

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:

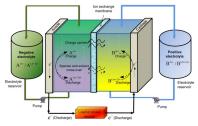


Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064-A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064-A5067, 2018.

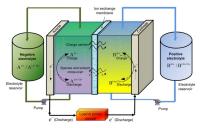
Transition metal complexes make attractive redox couples for RFBs

Machine learning in chemistry

good ion stability (compared to organics)

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



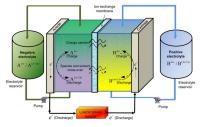
Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064-A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

- good ion stability (compared to organics)
- good range of redox potentials available

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064-A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

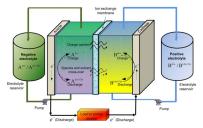
- good ion stability (compared to organics)
- good range of redox potentials available

Machine learning in chemistry

solubility is an issue!

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064-A5067, 2018,

Transition metal complexes make attractive redox couples for RFBs

- good ion stability (compared to organics)
- good range of redox potentials available

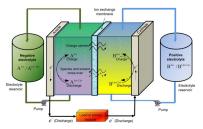
Machine learning in chemistry

solubility is an issue!

$$E_{\text{cell}} = 0.5 \times \Delta G_{\text{solv}} \times C \times n \times F$$

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064-A5067, 2018,

Transition metal complexes make attractive redox couples for RFBs

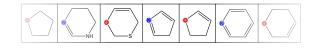
- good ion stability (compared to organics)
- good range of redox potentials available

Machine learning in chemistry

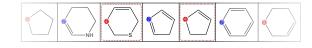
solubility is an issue!

$$E_{\text{cell}} = 0.5 \times \Delta G_{\text{solv}} \times C \times n \times F$$

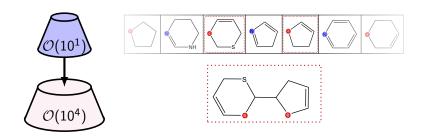
We need complexes that have high redox potential **and** good solubility



38 heterocycles

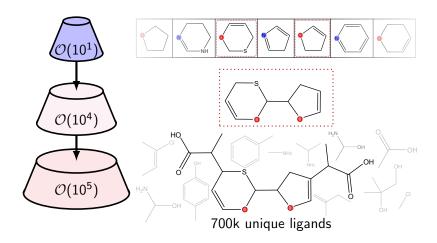


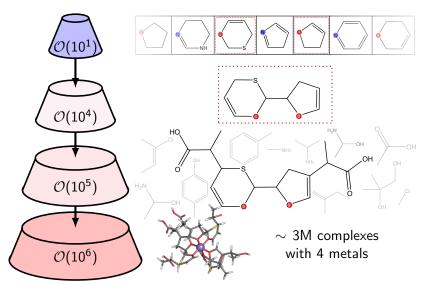
38 heterocycles



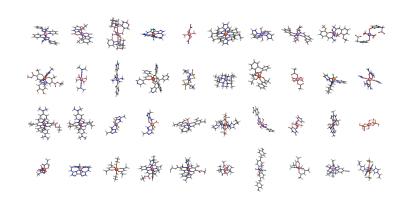
Machine learning in chemistry

779 base ligands

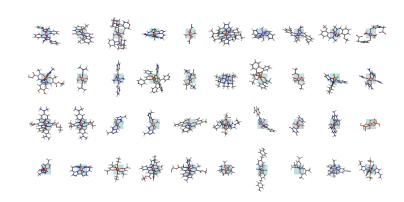




Computational methods can search for suitable complexes

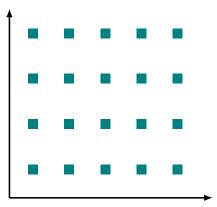


Computational methods can search for suitable complexes



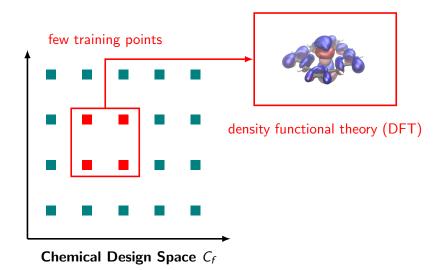
Computational methods can search for suitable complexes

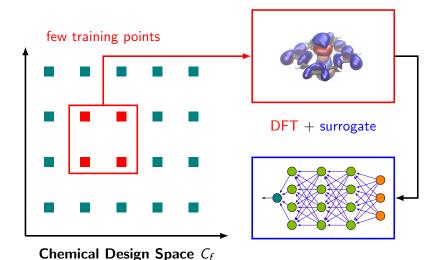
Computational methods can search for suitable complexes



Introduction

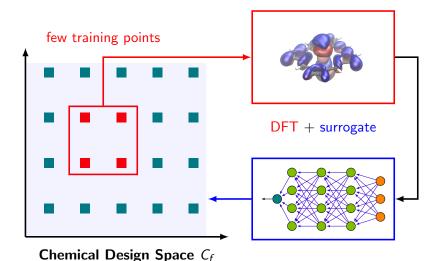
Chemical Design Space C_f

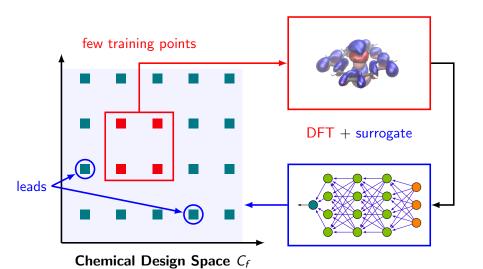


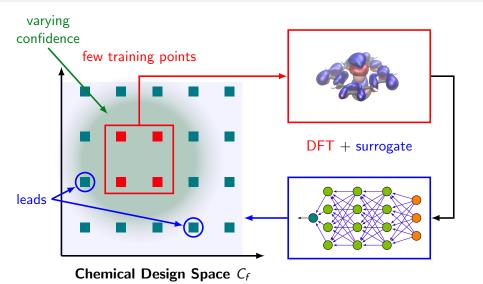


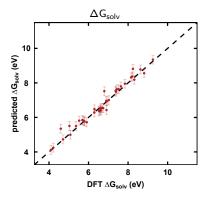
10/24

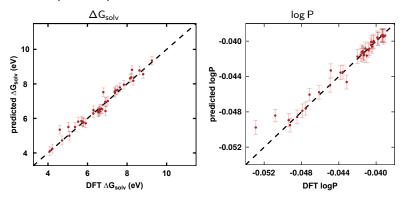
Computational approaches to chemical discovery

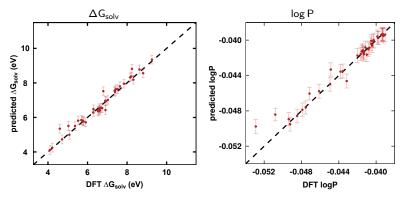






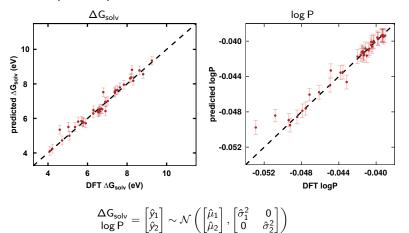






Screen 3M complexes in < 4 minutes on a regular workstation, c.f. 50 **GPU-years** with DFT

We can predict quantites of interest for our RFBs with ANNs



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

3 imes 100 tanh nodes, multitask, fully connected

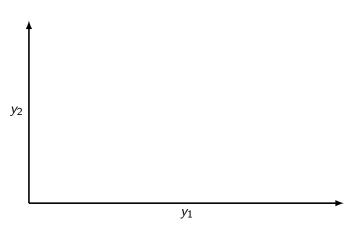
We can predict quantites of interest for our RFBs with ANNs

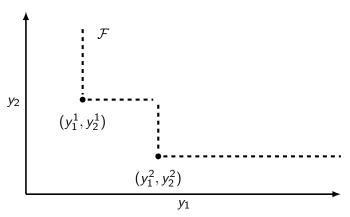


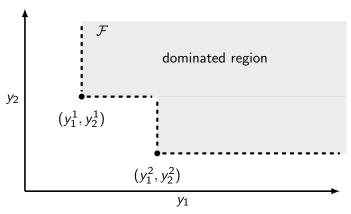
$$\frac{\Delta \mathsf{G}_{\mathsf{solv}}}{\mathsf{log}\,\mathsf{P}} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \hat{\mu}_1 \\ \hat{\mu}_2 \end{bmatrix}, \begin{bmatrix} \hat{\sigma}_1^2 & 0 \\ 0 & \hat{\sigma}_2^2 \end{bmatrix} \right)$$

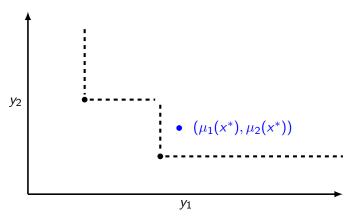
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

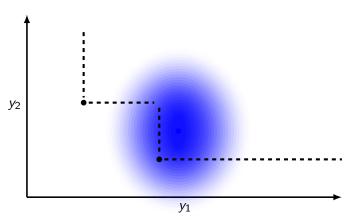
3 × 100 tanh nodes, multitask, fully connected

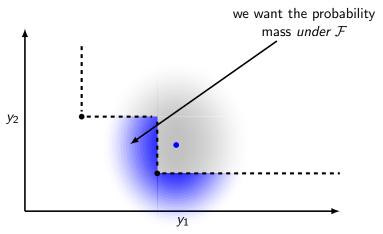


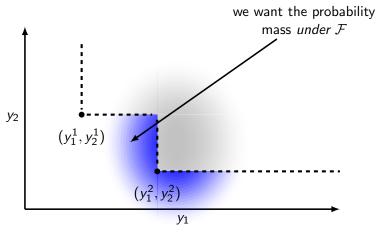






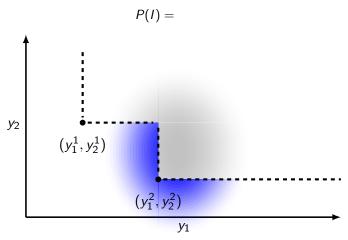




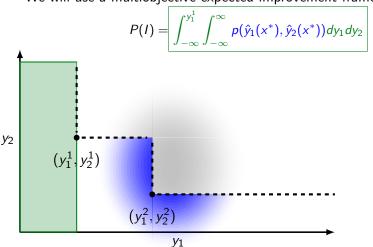


We will use a multiobjective expected improvement framework:

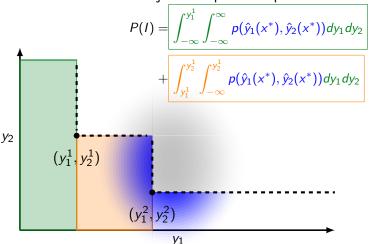
Machine learning in chemistry



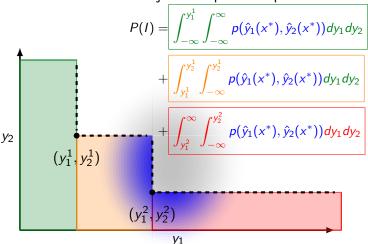
Keane, A. J., AIAA Journal, 44(4):879-891, 2006.



We will use a multiobjective expected improvement framework:

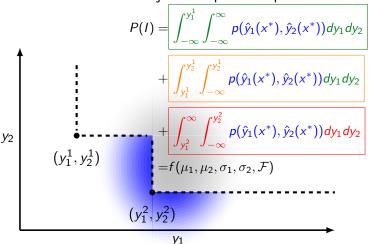


Keane, A. J., AIAA Journal, 44(4):879-891, 2006.



2D EGO Illustration

We will use a multiobjective expected improvement framework:

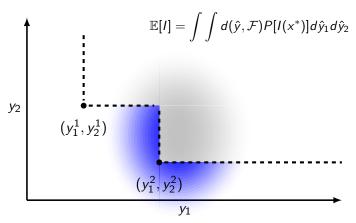


Keane, A. J., AIAA Journal, 44(4):879-891, 2006.

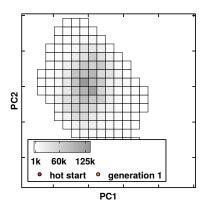
2D EGO Illustration

We will use a multiobjective expected improvement framework:

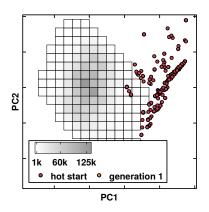
Machine learning in chemistry



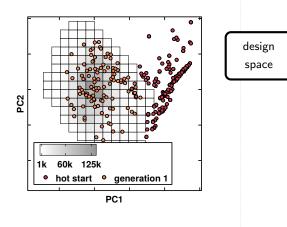
Jump start the design with diversity-oriented cluster:



Jump start the design with diversity-oriented cluster:

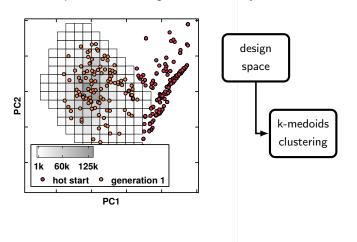


Jump start the design with diversity-oriented cluster:

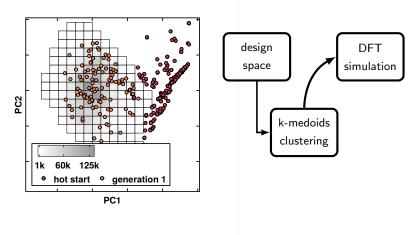


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Jump start the design with diversity-oriented cluster:

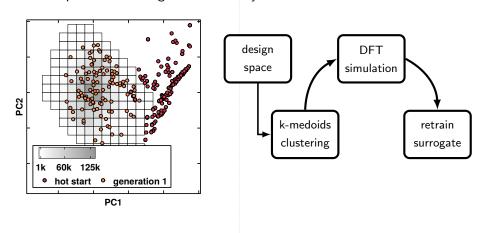


Jump start the design with diversity-oriented cluster:



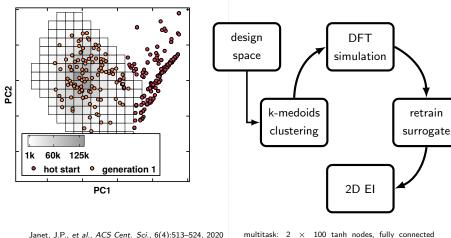
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Jump start the design with diversity-oriented cluster:



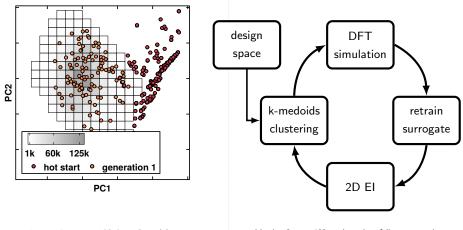
retrain

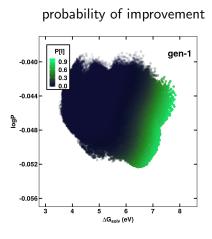
Jump start the design with diversity-oriented cluster:



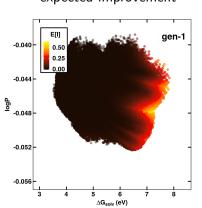
× 100 tanh nodes, fully connected

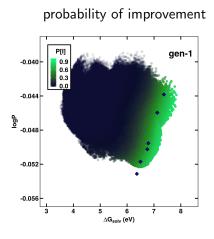
Jump start the design with diversity-oriented cluster:





expected improvement

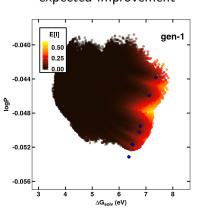


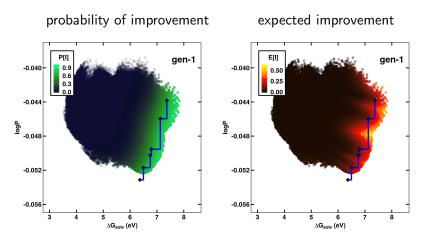


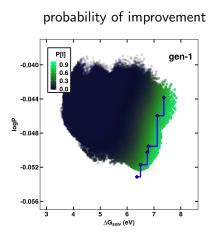
Case Study

000000000

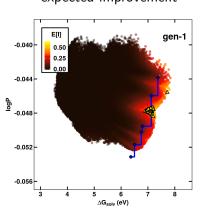
expected improvement





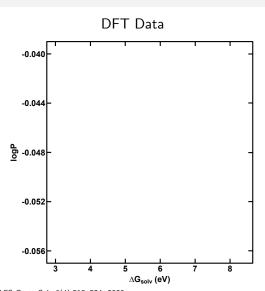


expected improvement

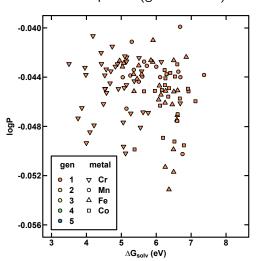


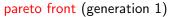
probability of improvement

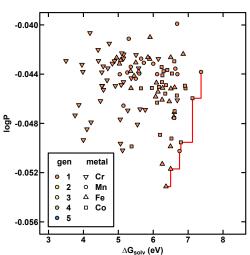
expected improvement

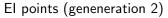


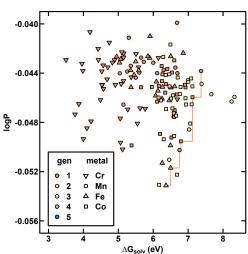
k-medoids points (generation 1)



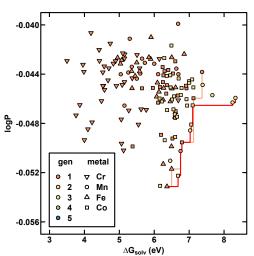




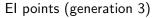


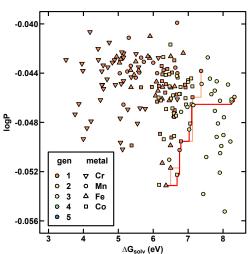


pareto front (generation 2)

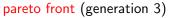


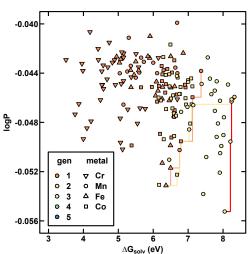
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

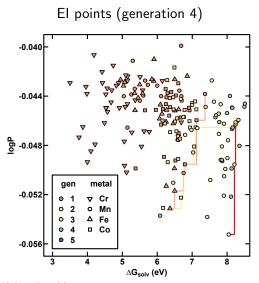




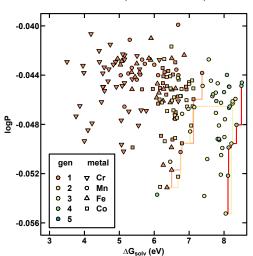
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

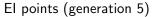


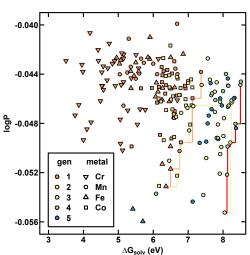




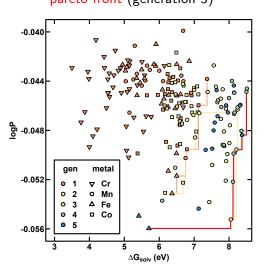
pareto front (generation 4)

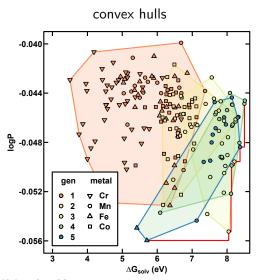






pareto front (generation 5)

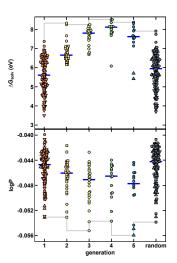




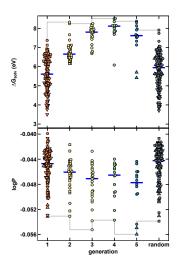
Case Study

0000000000

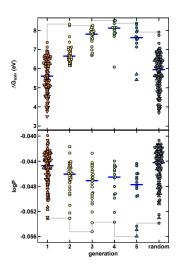
 El framework provides high resolution in the region of interest (c.f. maximum uncertainty), converges quickly



- El framework provides high resolution in the region of interest (c.f. maximum uncertainty), converges quickly
- We are able to identify fruitful regions from large chemical spaces based on few DFT evaluations



- El framework provides high resolution in the region of interest (c.f. maximum uncertainty), converges quickly
- We are able to identify fruitful regions from large chemical spaces based on few DFT evaluations
- Multiobjective DFT optimization guided by data-driven method efficiency generates lead complexes



Acknowledgments

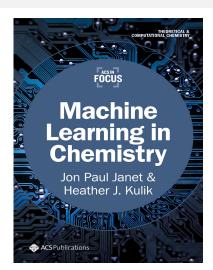
This work is thanks to the Kulik group and funding partners:

Table of Contents

- 1 Introduction
- 2 Case Study
 - Introduction
 - Multiobjective design with ML
 - Conclusions
- 3 Machine learning in chemistry
 - Outline
 - Chapter highlights
 - 4 Conclusion

Machine learning in chemistry book

Introduces everything needed to work with common machine learning tools in the context of chemical sciences:



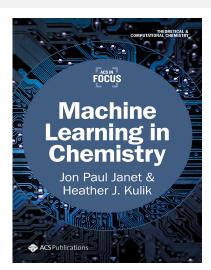
Machine learning in chemistry

000000

Machine learning in chemistry book

Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

History and context 1



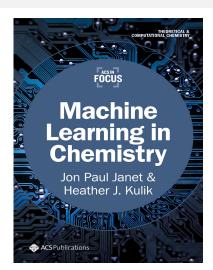
Machine learning in chemistry

000000

Machine learning in chemistry book

Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

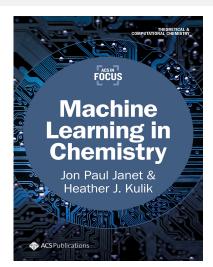
- History and context 1
- Statistical learning 2



Machine learning in chemistry

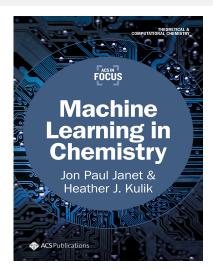
Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

- History and context 1
- Statistical learning 2
- Linear and kernel models 3



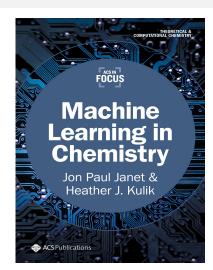
Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

- History and context 1
- Statistical learning 2
- Linear and kernel models 3
- Representations and feature 4 Selection



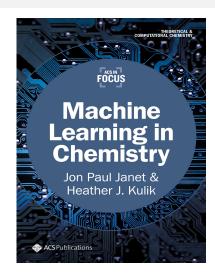
Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

- History and context 1
- Statistical learning 2
- I inear and kernel models 3
- Representations and feature 4 Selection
- Neural networks and 5 representation learning



Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

- History and context 1
- Statistical learning 2
- Linear and kernel models 3
- Representations and feature 4 Selection
- Neural networks and 5 representation learning
- Practical advice 6



Introduction

Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

Introduction

Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

observation

property

Introduction

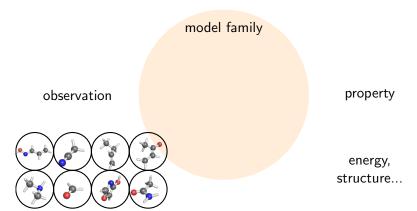
Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

observation

property

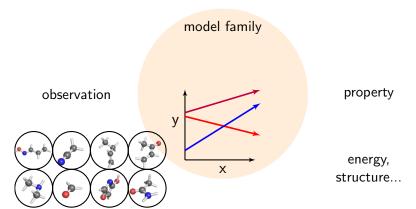
energy, structure...

Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

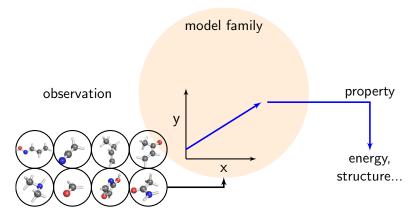


Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

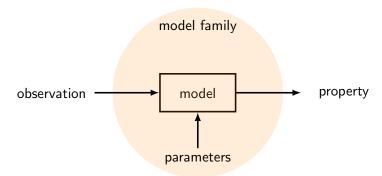
Machine learning in chemistry



Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.



Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

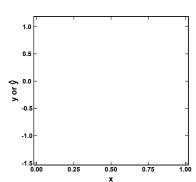


We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

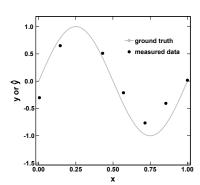


We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Assume 8 measurements with noise $\mathcal{N}(0,0.2)$

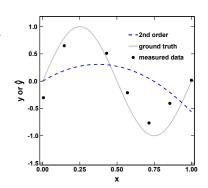


We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Start with degree 2...

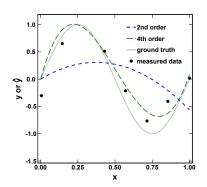


We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Start with degree 2... What happens when we increase the degree ?

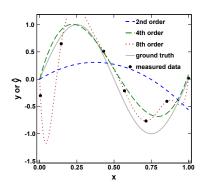


We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Start with degree 2... What happens when we increase the degree ?



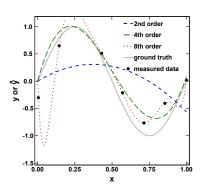
We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Empirical risk: error on training data

True risk: error over the whole domain



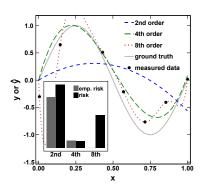
We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Empirical risk: error on training data

True risk: error over the whole domain



We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

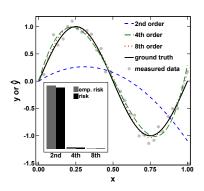
Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Empirical risk: error on training data

True risk: error over the whole domain

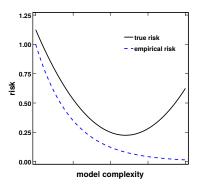
What happens if we add more data?



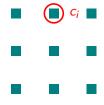
We need to understand how models can generalize, i.e. predict previously unseen data (or not). Statistical learning theory allows us to study this behaviour.

We cannot choose model complexity (hyperparameters, regularization) based on training data.

Cross-validation (and related techniques) must be used to compare models.



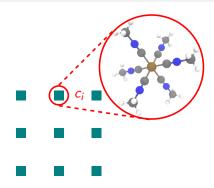
Chemical Space C_f



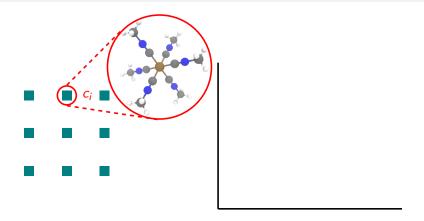
Chemical Space C_f

000000

C4: Representing chemical systems

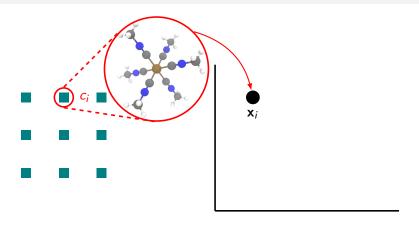


Chemical Space C_f



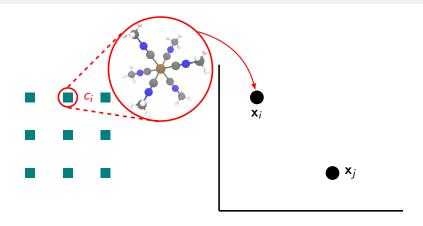
Chemical Space C_f

Descriptor Space $\mathcal{X} \subset \mathbb{R}^d$



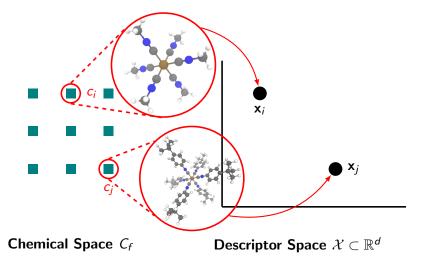
Chemical Space C_f

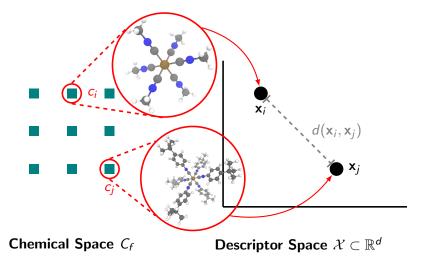
Descriptor Space $\mathcal{X} \subset \mathbb{R}^d$



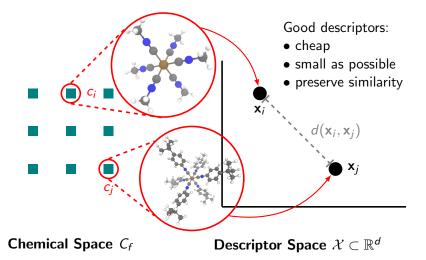
Chemical Space C_f

Descriptor Space $\mathcal{X} \subset \mathbb{R}^d$





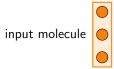
Machine learning in chemistry



Simple neural networks can be understood as learned, continuous maps from the input space to a latent space, followed by linear regression

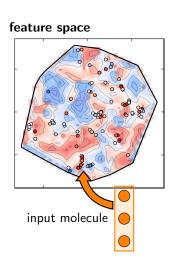
Simple neural networks can be understood as learned, continuous maps from the input space to a latent space, followed by linear regression

Machine learning in chemistry



00000

C5: How neural networks work



00000

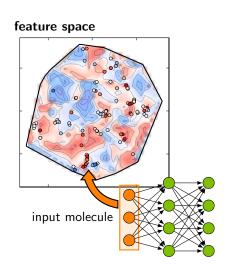
C5: How neural networks work

feature space

input molecule

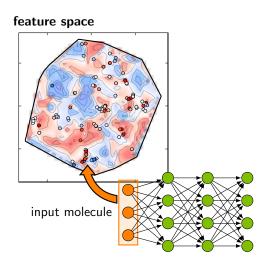
00000

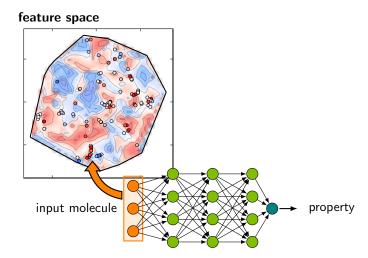
C5: How neural networks work



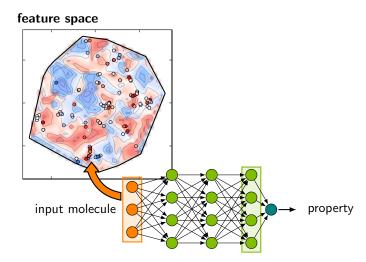
00000

C5: How neural networks work

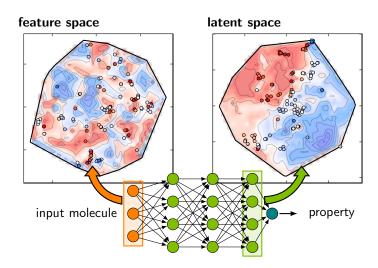




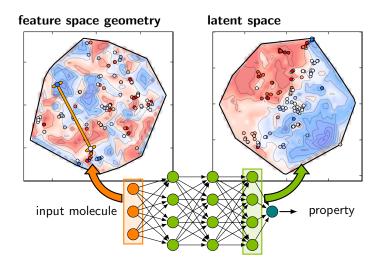
Machine learning in chemistry



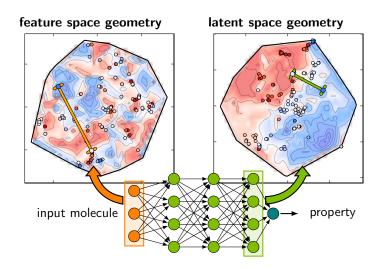
Machine learning in chemistry



Machine learning in chemistry



Machine learning in chemistry



Machine learning in chemistry

Table of Contents

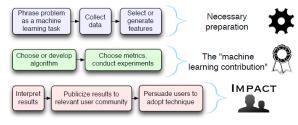
- - Introduction
 - Multiobjective design with ML
 - Conclusions
- 3 Machine learning in chemistry
 - Outline
 - Chapter highlights
- Conclusion

Final thoughts

It is increasingly important to be literate about ML concepts. Even if/when the hype lessens, ML tools will continue to have a large impact on our science.

Final thoughts

It is increasingly important to be literate about ML concepts. Even if/when the hype lessens, ML tools will continue to have a large impact on our science.

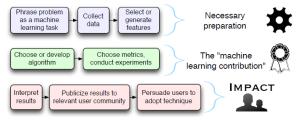


Wagstaff, K., "Machine Learning that Matters", ICML 29, 16(7):529-536, 2012

Final thoughts

Introduction

It is increasingly important to be literate about ML concepts. Even if/when the hype lessens, ML tools will continue to have a large impact on our science.



Wagstaff, K., "Machine Learning that Matters", ICML 29, 16(7):529-536, 2012

Conversely, there is a growing need for domain experts to engage and derive impact from advances in ML, and you have a lot of value to contribute to interpreting and exploiting the results.