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Rise of the (chemical) machines

Something interesting happened at the CASP 13 protein folding
prediction competition in Mexico in December 2018...

A new entry, competing in their first CASP, dominated in the
no-information category, winning 25 out of 43 tests.

The next
best team won 3 of the remaining tests.

The same team ran away with the competition in CASP 14 in
2020, leading CASP co-founder John Moult to conclude “In some
sense the problem is solved”The team was Alphafold, by

.
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The team was Alphafold, by .

Senior, A.W., et al., Nature, 577: 706–710, 2020.
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Rise of the (chemical) machines

The team was Alphafold, by .

“It is not that machines are going to replace chemists. It’s that the
chemists who use machines will replace those that do not”

-Derek Lowe, In the Pipeline

This is probably a bit strong, but all scientists generate data as a
product. ML provides new, powerful ways to exploit this
information.
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Motivation: chemical discovery

Why is ML transforming chemisty?

Virshup et al., J. Am. Chem. Soc., 135(19): 7296–7303, 2013.

The space of possible
chemistries is incredibly
vast, with O(1060) small
organic molecules.

All potentially undiscovered
medicines, catalysts and
materials are somewhere,
out in this huge space.
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Why ML in chemical sciences?
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Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



5/27

Introduction Case Study Machine learning in chemisty Conclusion

Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



5/27

Introduction Case Study Machine learning in chemisty Conclusion

Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



5/27

Introduction Case Study Machine learning in chemisty Conclusion

Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



5/27

Introduction Case Study Machine learning in chemisty Conclusion

Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



5/27

Introduction Case Study Machine learning in chemisty Conclusion

Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



5/27

Introduction Case Study Machine learning in chemisty Conclusion

Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



5/27

Introduction Case Study Machine learning in chemisty Conclusion

Why does ML seem to be taking over?

chemical
sciences

machine learning methods

computer
vision

convolutional
neural nets

Green, H., et al., bioRxiv 2021.01.07.425790, 2021.

natural
language

processing

transformers

Schwaller, P., et al., Nat. Mach. Intell., 3: 144–152, 2021.

diverse applications from
traffic networks to

medicine

graph
convolutions

Duvenaud, D., et al., NeurIPS 28, 2015.



6/27

Introduction Case Study Machine learning in chemisty Conclusion

Future directions for ML in chemistry

Some areas of high current interest:

Neural network potentials -
quantum accuracy, force field
cost. Reactive dynamics on
your laptop!

Synthesis planning and
optimization. Fully
automated chemistry!

Generative models. Designing
new drugs directly into the
pocket, de novo!

Devereux, C., et al., J. Chem. Theory Comput., 16(7):4192–4202, 2020

Somnath, V.R., et al., arXiv:2006.07038v1, 2020

Ragoza, M., et al., arXiv:2010.08687v3, 2020
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Redox flow batteries

Redox flow batteries (RFBs)
are a promising option for
scalable energy storage:

Perry, M.L. and Adam, Z., J. Electrochem. Soc.,
163(1):A5064–A5067, 2018.

good ion stability (compared
to organics)

good range of redox
potentials available

solubility is an issue!

Ecell = 0.5×∆Gsolv × C × n × F

We need complexes that have high
redox potential and good solubility
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A design space for RFBs
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A design space for RFBs
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A design space for RFBs
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Computational approaches to chemical discovery

Computational methods can search for suitable complexes

Chemical Design Space Cf

few training points

density functional theory (DFT)DFT + surrogate

leads

varying
confidence
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Multiobjective optimization

We can predict quantites of interest for our RFBs with ANNs

Janet, J.P., et al., ACS Cent. Sci., 6(4):513–524, 2020
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uncertainty), converges quickly

We are able to identify fruitful
regions from large chemical
spaces based on few DFT
evaluations

Multiobjective DFT
optimization guided by
data-driven method efficiency
generates lead complexes
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C2: Statistical learning and generalization

We need to understand how models can generalize, i.e. pre-
dict previously unseen data (or not). Statistical learning theory
allows us to study this behaviour.
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ŷ

ground truth

measured data

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

y 
o

r 
ŷ
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y(x) = sin(2πx)
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ŷ

2nd order

4th order

8th order

ground truth

measured data

2nd 4th 8th

emp. risk
risk

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

y 
o

r 
ŷ
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ŷ

ground truth

measured data

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

y 
o

r 
ŷ
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ŷ

2nd order

4th order

8th order

ground truth

measured data

2nd 4th 8th

emp. risk
risk

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

y 
o

r 
ŷ
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ŷ

2nd order

4th order

8th order

ground truth

measured data

2nd 4th 8th

emp. risk
risk

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

y 
o

r 
ŷ
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C2: Statistical learning and generalization

We need to understand how models can generalize, i.e. pre-
dict previously unseen data (or not). Statistical learning theory
allows us to study this behaviour.

We cannot choose model
complexity (hyperparameters,
regularization) based on training
data.

Cross-validation (and related
techniques) must be used to
compare models.
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ŷ

2nd order

4th order

8th order

ground truth

measured data

2nd 4th 8th

emp. risk
risk

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

y 
o

r 
ŷ
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C3: Linear and nonlinear kernels

Linear models serve a tool to understand nonlinear models,
regularization

linear kernel

x1

x2

y(x∗) = w1x
∗
1 + w2x

∗
2y(x∗) =

∑n
i=1 aik(x∗, x (i))
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linear model

y(x∗) =
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C4: Representing chemical systems

Chemical Space Cf

ci

Descriptor Space X ⊂ Rd

xi

xj

cj

d(xi , xj)

Good descriptors:
• cheap
• small as possible
• preserve similarity
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C4: Types of representation

complexity

Fingerprints

– considerable use in
drug design

– no information
related to molecular
topology

– cheap to compute

Graph-theoretic

– topological and
topochemical repre-
sentations

– includes all connec-
tivity but no 3D infor-
mation

– relatively easy to
compute

3D structure

– fine-grained struc-
tural information in
3D

– mimic input to a
quantum chemistry
code

–expensive to compute,
rich information
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C5: How neural networks work

Simple neural networks can be understood as learned, continuous
maps from the input space to a latent space, followed by linear re-
gression

input molecule property

feature spacefeature space geometry latent spacelatent space geometry
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Final thoughts

It is increasingly important to be literate about ML concepts.
Even if/when the hype lessens, ML tools will continue to have
a large impact on our science.

Conversely, there is a growing need for domain experts to en-
gage and derive impact from advances in ML, and you have
a lot of value to contribute to interpreting and exploiting the
results.

Wagstaff, K., “Machine Learning that Matters”, ICML 29, 16(7):529–536, 2012
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