Machine Learning – now and in the future

Jon Paul Janet¹

¹Medicinal Chemistry, Early CVRM, R&D BioPharmaceuticals, AstraZeneca, 431 83 Mölndal, Sweden

25.05.2021

Table of Contents

1 Introduction

- 2 Case Study
 - Introduction
 - Multiobjective design with ML
 - Conclusions
- Machine learning in chemisty
 Outline
 - Chapter highlights

4 Conclusion

Machine learning in chemisty

Conclusion 00

Rise of the (chemical) machines

Something interesting happened at the **CASP 13** protein folding prediction competition in Mexico in December 2018...

Something interesting happened at the **CASP 13** protein folding prediction competition in Mexico in December 2018...

A new entry, competing in their first CASP, dominated in the no-information category, **winning 25 out of 43 tests**.

Something interesting happened at the **CASP 13** protein folding prediction competition in Mexico in December 2018...

A new entry, competing in their first CASP, dominated in the no-information category, **winning 25 out of 43 tests**. The next best team won 3 of the remaining tests.

Something interesting happened at the **CASP 13** protein folding prediction competition in Mexico in December 2018...

A new entry, competing in their first CASP, dominated in the no-information category, **winning 25 out of 43 tests**. The next best team won 3 of the remaining tests.

The same team ran away with the competition in **CASP 14** in 2020, leading CASP co-founder John Moult to conclude "In some sense the problem is solved"

Case Study

Machine learning in chemisty

Conclusion 00

Rise of the (chemical) machines

The team was Alphafold, by 오 DeepMind.

Case Study

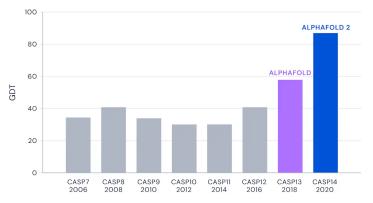
Machine learning in chemisty

Conclusion

Rise of the (chemical) machines

The team was Alphafold, by ODeepMind.

Median Free-Modelling Accuracy



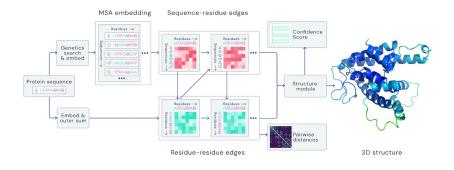
Case Study

Machine learning in chemisty

Conclusion

Rise of the (chemical) machines

The team was Alphafold, by ODeepMind.



Senior, A.W., et al., Nature, 577: 706-710, 2020.

Machine learning in chemisty

Conclusion

Rise of the (chemical) machines

The team was Alphafold, by ODeepMind.

"It is not that machines are going to replace chemists. It's that the chemists who use machines will replace those that do not" -Derek Lowe, In the Pipeline

Machine learning in chemisty

Conclusion

Rise of the (chemical) machines

The team was Alphafold, by ODeepMind.

"It is not that machines are going to replace chemists. It's that the chemists who use machines will replace those that do not" -Derek Lowe, In the Pipeline

This is probably a bit strong, but all scientists generate data as a product. ML provides new, powerful ways to exploit this information.

Machine learning in chemisty

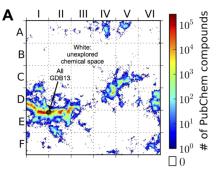
Conclusion

Motivation: chemical discovery

Why is ML transforming chemisty?

The space of possible chemistries is incredibly vast, with $\mathcal{O}(10^{60})$ small organic molecules.

All potentially undiscovered medicines, catalysts and materials are somewhere, out in this huge space.



Virshup et al., J. Am. Chem. Soc., 135(19): 7296-7303, 2013.

Case Study

Machine learning in chemisty

Conclusion 00

Case Study

Machine learning in chemisty

Conclusion 00

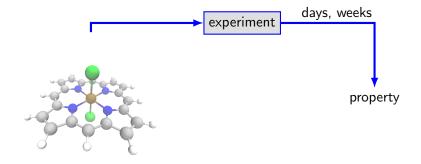
Why ML in chemical sciences?

property

Case Study

Machine learning in chemisty

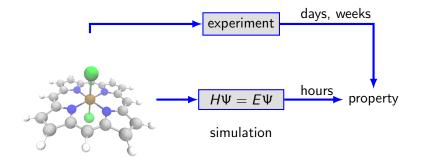
Conclusion



Case Study

Machine learning in chemisty

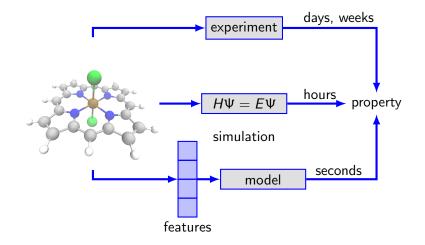
Conclusion



Case Study

Machine learning in chemisty

Conclusion



Machine learning in chemisty 0000000

Conclusion 00

Why does ML seem to be taking over?

machine learning methods

Case Study 00000000000

Machine learning in chemisty

Conclusion

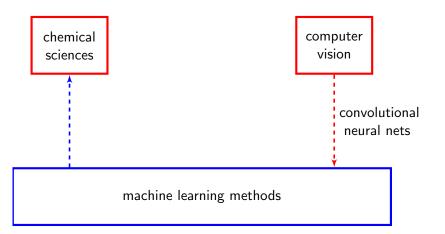
Why does ML seem to be taking over?

chemical sciences computer vision

machine learning methods

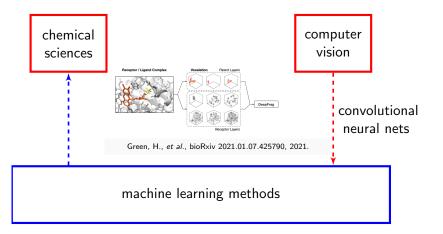
 Introduction
 Case Study
 Machine learning in chemisty
 Conclusion

 000000
 000000000
 00000000
 00



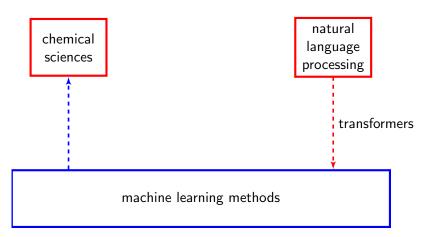
Machine learning in chemisty

Conclusion



 Introduction
 Case Study
 Machine learning in chemisty

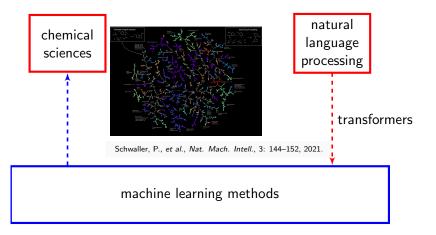
 000000
 000000000
 00000000



Case Study

Machine learning in chemisty

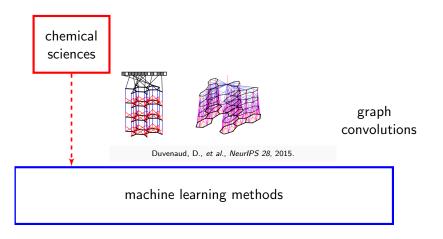
Conclusion



Case Study 00000000000

Machine learning in chemisty 0000000

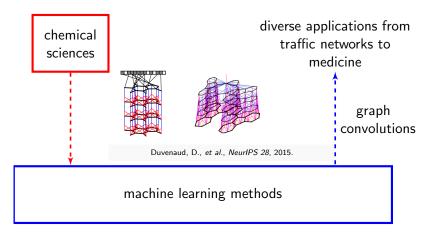
Conclusion



Case Study

Machine learning in chemisty

Conclusion



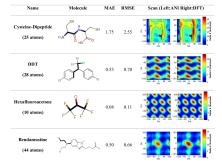
Future directions for ML in chemistry

Some areas of high current interest:

Future directions for ML in chemistry

Some areas of high current interest:

 Neural network potentials quantum accuracy, force field cost. Reactive dynamics on your laptop!



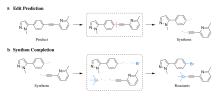
Devereux, C., et al., J. Chem. Theory Comput., 16(7):4192-4202, 2020

Conclusion 00

Future directions for ML in chemistry

Some areas of high current interest:

- Neural network potentials quantum accuracy, force field cost. Reactive dynamics on your laptop!
- Synthesis planning and optimization. Fully automated chemistry!



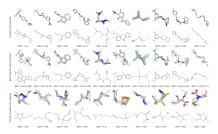
Somnath, V.R., et al., arXiv:2006.07038v1, 2020

Conclusion 00

Future directions for ML in chemistry

Some areas of high current interest:

- Neural network potentials quantum accuracy, force field cost. Reactive dynamics on your laptop!
- Synthesis planning and optimization. Fully automated chemistry!
- Generative models. Designing new drugs directly into the pocket, *de novo*!



Ragoza, M., et al., arXiv:2010.08687v3, 2020

Table of Contents

1 Introduction

- 2 Case Study
 - Introduction
 - Multiobjective design with ML
 - Conclusions
- Machine learning in chemisty
 Outline
 - Chapter highlights

4 Conclusion

Machine learning in chemisty 0000000

Conclusion 00

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:

Case Study ○●○○○○○○○○

Machine learning in chemisty 00000000

Conclusion 00

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



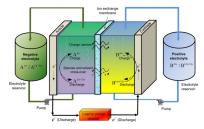
Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064–A5067, 2018.

Machine learning in chemisty

Conclusion

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064–A5067, 2018.

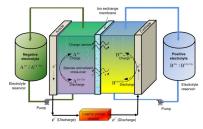
Transition metal complexes make attractive redox couples for RFBs

Machine learning in chemisty

Conclusion

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., *J. Electrochem. Soc.*, 163(1):A5064–A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

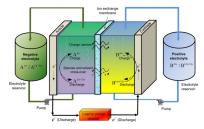
good ion stability (compared to organics)

Machine learning in chemisty

Conclusion

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064–A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

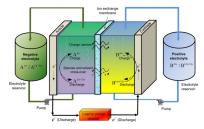
- good ion stability (compared to organics)
- good range of redox potentials available

Machine learning in chemisty

Conclusion

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., *J. Electrochem. Soc.*, 163(1):A5064–A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

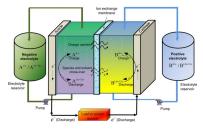
- good ion stability (compared to organics)
- good range of redox potentials available
- solubility is an issue!

Machine learning in chemisty

Conclusion

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., *J. Electrochem. Soc.*, 163(1):A5064–A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

- good ion stability (compared to organics)
- good range of redox potentials available
- solubility is an issue!

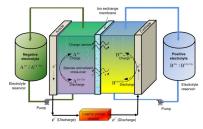
$$E_{\mathsf{cell}} = 0.5 imes \Delta G_{\mathsf{solv}} imes C imes n imes F$$

Machine learning in chemisty

Conclusion

Redox flow batteries

Redox flow batteries (RFBs) are a promising option for scalable energy storage:



Perry, M.L. and Adam, Z., J. Electrochem. Soc., 163(1):A5064–A5067, 2018.

Transition metal complexes make attractive redox couples for RFBs

- good ion stability (compared to organics)
- good range of redox potentials available
- solubility is an issue!

$$E_{\mathsf{cell}} = 0.5 imes \Delta G_{\mathsf{solv}} imes C imes n imes F$$

We need complexes that have high redox potential **and** good solubility

Case Study

Machine learning in chemisty 00000000

Conclusion

A design space for RFBs

Case Study

Machine learning in chemisty

Conclusion

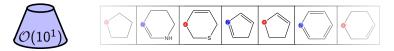
A design space for RFBs

Case Study

Machine learning in chemisty

Conclusion

A design space for RFBs



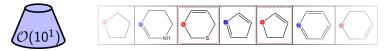
38 heterocycles

Case Study

Machine learning in chemisty 00000000

Conclusion

A design space for RFBs



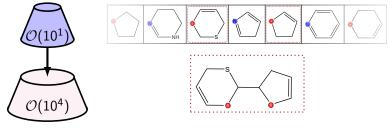
38 heterocycles

Case Study

Machine learning in chemisty 00000000

Conclusion

A design space for RFBs



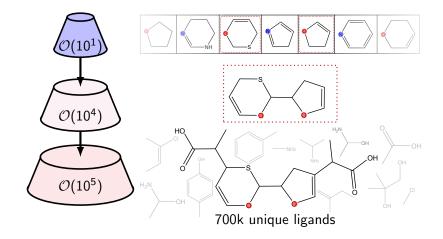
779 base ligands

Case Study

Machine learning in chemisty

Conclusion

A design space for RFBs

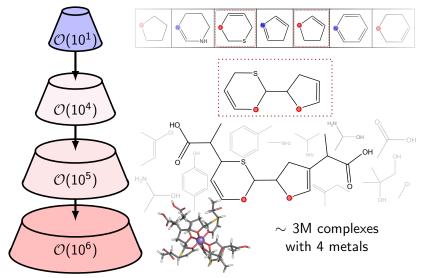


Case Study

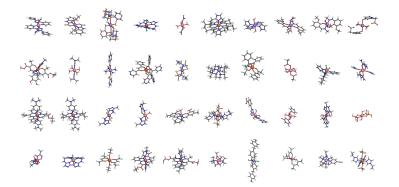
Machine learning in chemisty 00000000

Conclusion

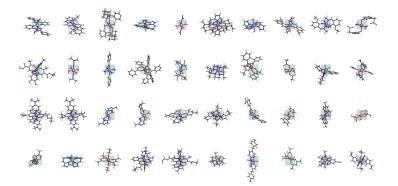
A design space for RFBs



Computational methods can search for suitable complexes

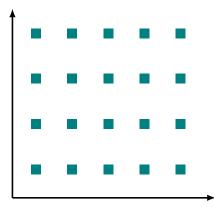


Computational methods can search for suitable complexes



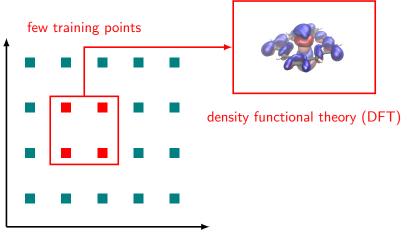
Computational methods can search for suitable complexes

Computational methods can search for suitable complexes



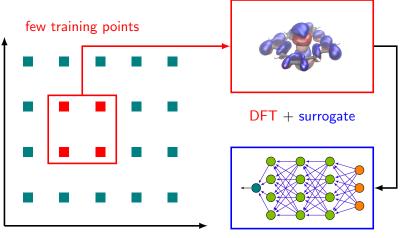
Conclusion

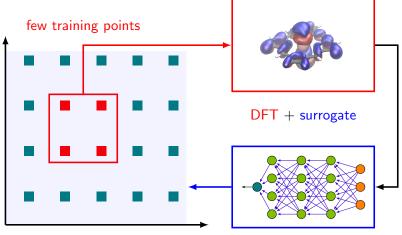
Computational approaches to chemical discovery

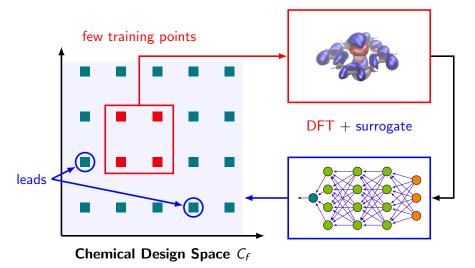


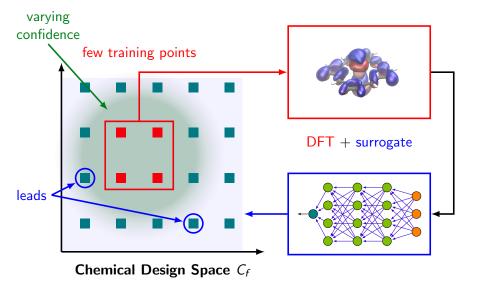
Conclusion 00

Computational approaches to chemical discovery









10/27

Multiobjective optimization

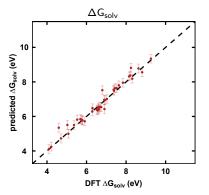
We can predict quantites of interest for our RFBs with ANNs

Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion

Multiobjective optimization

We can predict quantites of interest for our RFBs with ANNs

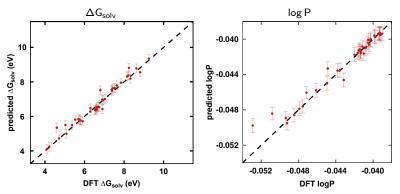


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion

Multiobjective optimization

We can predict quantites of interest for our RFBs with ANNs

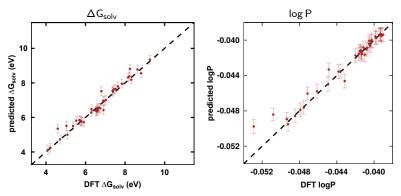


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion

Multiobjective optimization

We can predict quantites of interest for our RFBs with ANNs



Screen 3*M* complexes in < 4 **minutes** on a regular workstation, c.f. 50 **GPU-years** with DFT

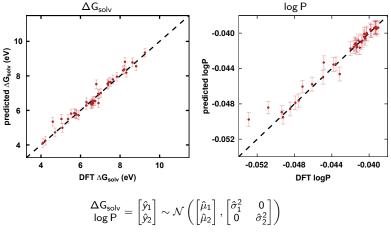
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Machine learning in chemisty

Conclusion 00

Multiobjective optimization

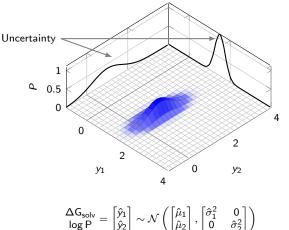
We can predict quantites of interest for our RFBs with ANNs



Conclusion

Multiobjective optimization

We can predict quantites of interest for our RFBs with ANNs



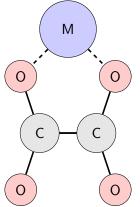
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion

Machine learning methods

Featurization:

Graph-based features (RACs) designed for TM complexes:

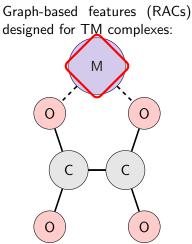


Janet, J.P., and Kulik, H.J., *J. Phys. Chem.* A, 121(46):8939–8954, 2017.

Conclusion

Machine learning methods

Featurization:

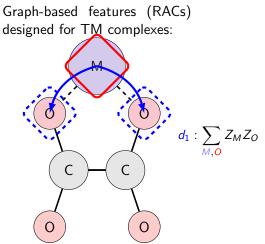


Janet, J.P., and Kulik, H.J., *J. Phys. Chem.* A, 121(46):8939–8954, 2017.

Conclusion

Machine learning methods

Featurization:

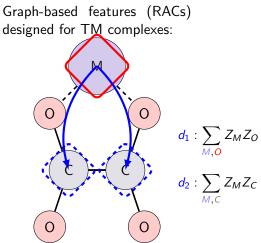


Janet, J.P., and Kulik, H.J., *J. Phys. Chem.* A, 121(46):8939–8954, 2017.

Conclusion

Machine learning methods

Featurization:

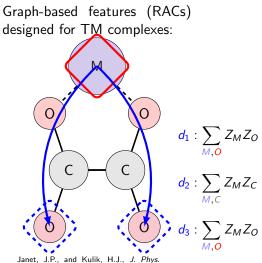


Janet, J.P., and Kulik, H.J., *J. Phys. Chem.* A, 121(46):8939–8954, 2017.

Conclusion

Machine learning methods

Featurization:

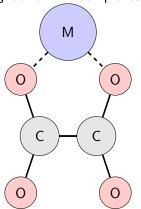


Chem. A, 121(46):8939-8954, 2017.

Machine learning methods

Featurization:

Graph-based features (RACs) designed for TM complexes:



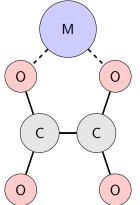
Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.

Regression:

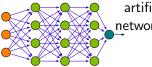
Machine learning methods

Featurization:

Graph-based features (RACs) designed for TM complexes:



Regression:



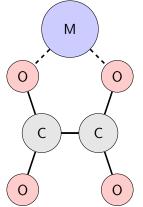
artifical neural networks (ANNs)

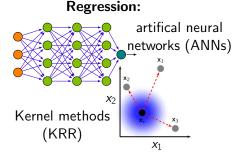
Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.

Machine learning methods

Featurization:

Graph-based features (RACs) designed for TM complexes:



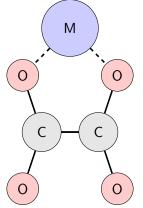


Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.

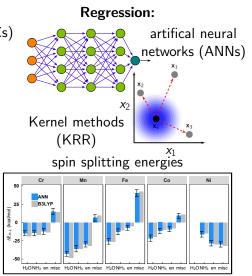
Machine learning methods

Featurization:

Graph-based features (RACs) designed for TM complexes:

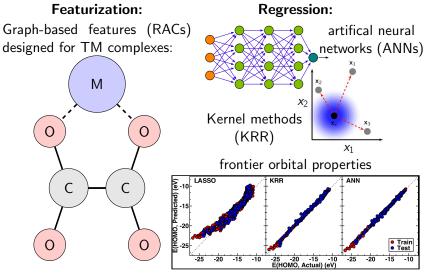


Janet, J.P., and Kulik, H.J., *J. Phys. Chem. A*, 121(46):8939–8954, 2017.



Janet, J.P. and Kulik, H.J., Chem. Sci., 8:5137–5152, 2017.

Machine learning methods



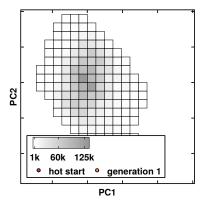
Janet, J.P., and Kulik, H.J., J. Phys. Chem. A, 121(46):8939–8954, 2017.

Nandy, A. et al., Ind. Eng. Chem. Res., 57(42):13973–13986, 2018.

Conclusion

Design space and clustering

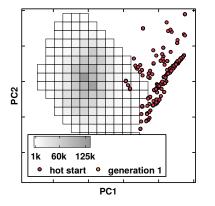
Jump start the design with diversity-oriented cluster:



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion

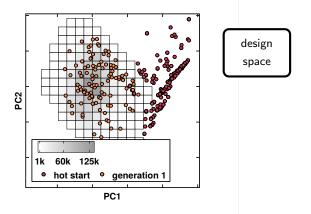
Design space and clustering



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion 00

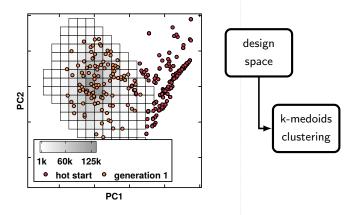
Design space and clustering



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion 00

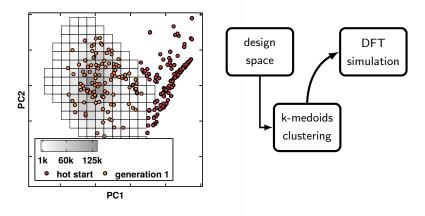
Design space and clustering



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Conclusion 00

Design space and clustering

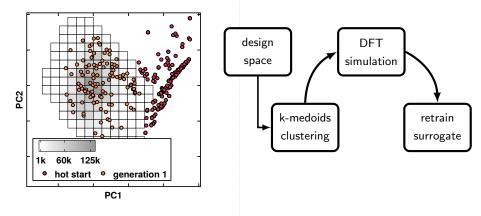


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Machine learning in chemisty

Conclusion

Design space and clustering



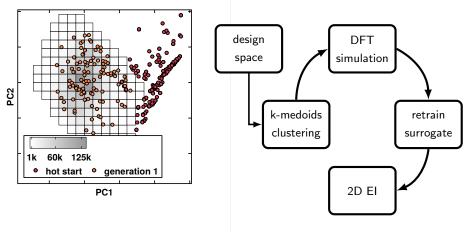
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Machine learning in chemisty

Conclusion

Design space and clustering

Jump start the design with diversity-oriented cluster:



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

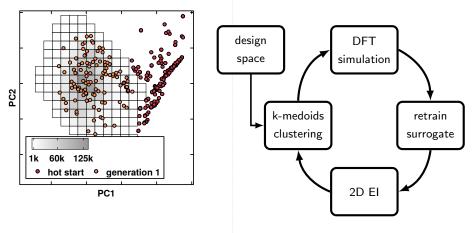
multitask: 2 $\, imes \,$ 100 tanh nodes, fully connected

Machine learning in chemisty

Conclusion

Design space and clustering

Jump start the design with diversity-oriented cluster:

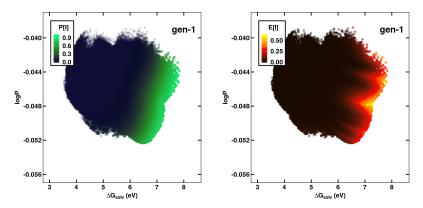


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

multitask: 2 $\, imes \,$ 100 tanh nodes, fully connected

Evolution of PI and EI

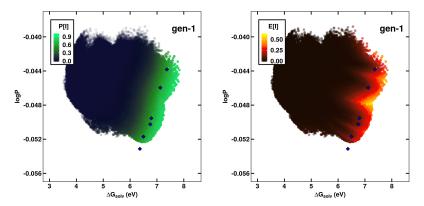
probability of improvement



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Evolution of PI and EI

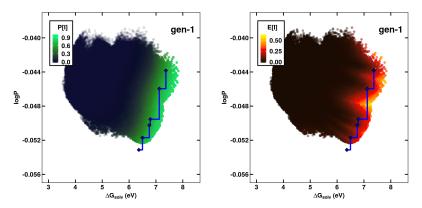
probability of improvement



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Evolution of PI and EI

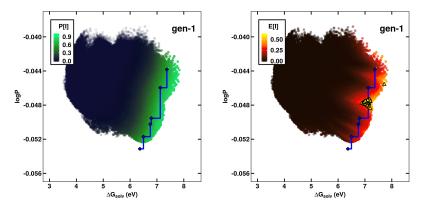
probability of improvement



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Evolution of PI and EI

probability of improvement



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Evolution of PI and EI

probability of improvement

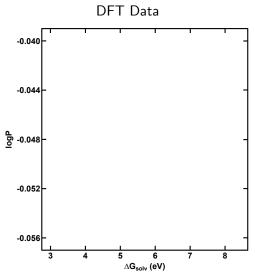
expected improvement

Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion

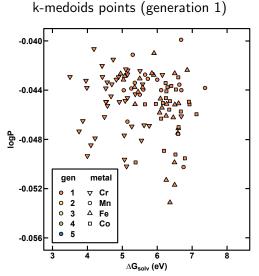


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion 00

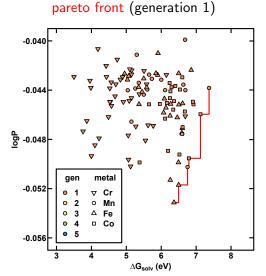


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty 0000000

Conclusion

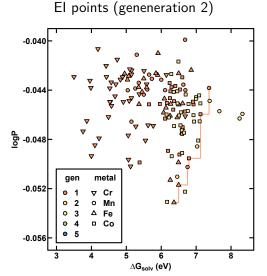


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty 0000000

Conclusion



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion

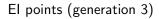


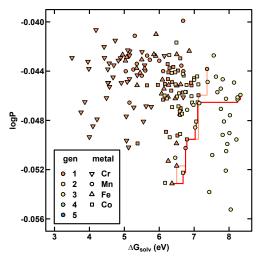
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion 00



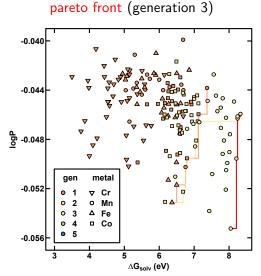


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion

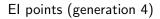


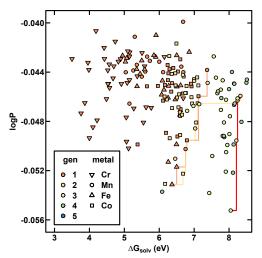
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion 00



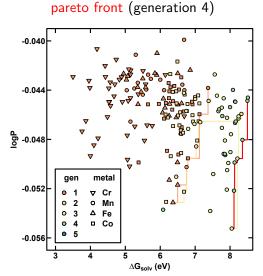


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion

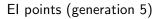


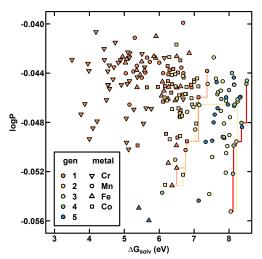
Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

Conclusion 00



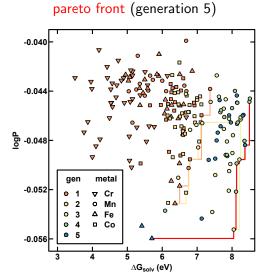


Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty

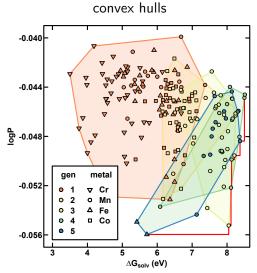
Conclusion



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study

Machine learning in chemisty 00000000



Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Case Study ○○○○○○○●○

Machine learning in chemisty 00000000

Conclusion 00

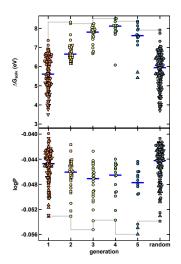
Conclusions

Janet, J.P., et al., ACS Cent. Sci., 6(4):513-524, 2020

Machine learning in chemisty

Conclusions

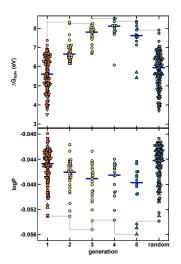
 El framework provides high resolution in the region of interest (c.f. maximum uncertainty), converges quickly



Machine learning in chemisty 00000000

Conclusions

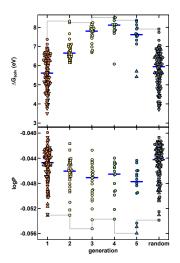
- El framework provides high resolution in the region of interest (c.f. maximum uncertainty), converges quickly
- We are able to identify fruitful regions from large chemical spaces based on few DFT evaluations



Machine learning in chemisty

Conclusions

- El framework provides high resolution in the region of interest (c.f. maximum uncertainty), converges quickly
- We are able to identify fruitful regions from large chemical spaces based on few DFT evaluations
- Multiobjective DFT optimization guided by data-driven method efficiency generates lead complexes



Acknowledgments

This work is thanks to the Kulik group and funding partners:

Table of Contents

Introduction

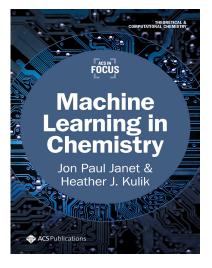
- 2 Case Study
 - Introduction
 - Multiobjective design with ML
 - Conclusions
- Machine learning in chemisty
 Outline
 - Chapter highlights

4 Conclusion

Machine learning in chemisty

Conclusion

Machine learning in chemistry book

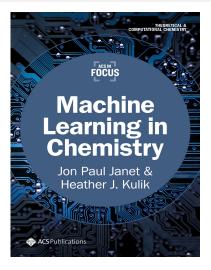


Machine learning in chemisty ●●●●●●● Conclusion

Machine learning in chemistry book

Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

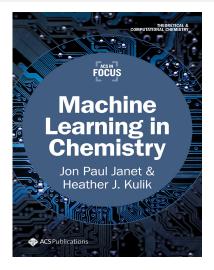
1 History and context



Machine learning in chemisty ●●●●●●● Conclusion

Machine learning in chemistry book

- 1 History and context
- 2 Statistical learning



Machine learning in chemisty

Conclusion 00

Machine learning in chemistry book

- 1 History and context
- 2 Statistical learning
- 3 Linear and kernel models

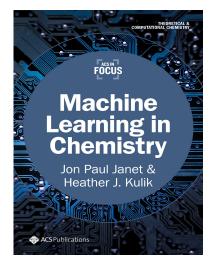


Machine learning in chemisty

Conclusion

Machine learning in chemistry book

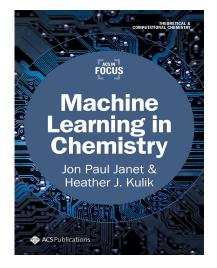
- 1 History and context
- 2 Statistical learning
- 3 Linear and kernel models
- 4 Representations and feature Selection



Machine learning in chemisty ●●●●●●● Conclusion

Machine learning in chemistry book

- 1 History and context
- 2 Statistical learning
- 3 Linear and kernel models
- 4 Representations and feature Selection
- 5 Neural networks and representation learning



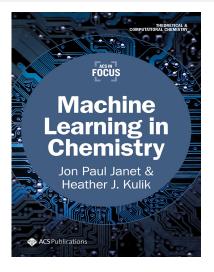
Case Study

Machine learning in chemisty ●●●●●●● Conclusion

Machine learning in chemistry book

Introduces everything needed to work with common machine learning tools in the context of chemical sciences:

- 1 History and context
- 2 Statistical learning
- 3 Linear and kernel models
- 4 Representations and feature Selection
- 5 Neural networks and representation learning
- 6 Practical advice



C2: Supervised learning

C2: Supervised learning

Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

observation

property

Machine learning in chemisty

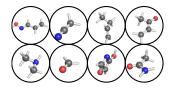
Conclusion

C2: Supervised learning

Supervised learning methods attempt to connect patterns in data to known endpoints by learning model parameters that reproduce the observed relationship.

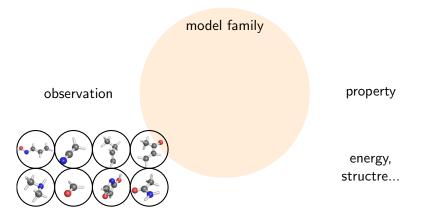
observation

property

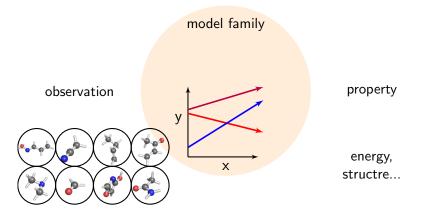


energy, structre...

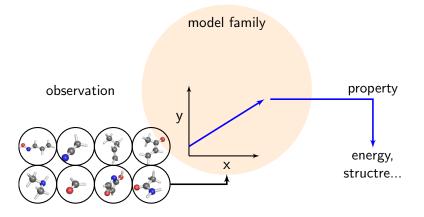
C2: Supervised learning



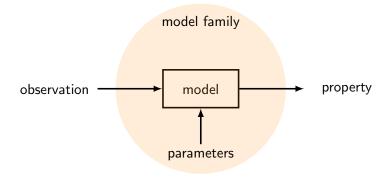
C2: Supervised learning



C2: Supervised learning

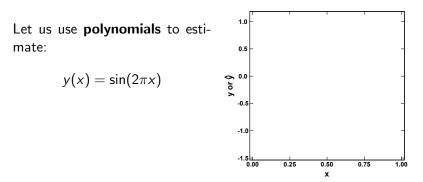


C2: Supervised learning



We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

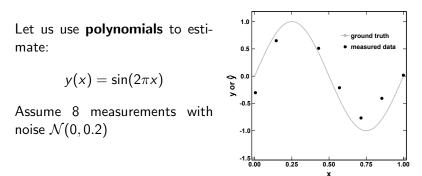
We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.



Conclusion 00

C2: Statistical learning and generalization

We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

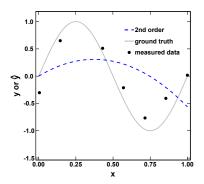


We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Start with degree 2...

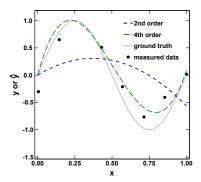


We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Start with degree 2... What happens when we increase the degree ?

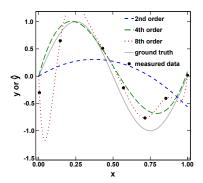


We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Start with degree 2... What happens when we increase the degree ?



Conclusion

C2: Statistical learning and generalization

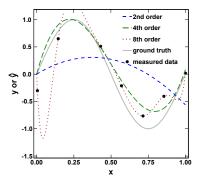
We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Empirical risk: error on training data

True risk: error over the whole domain



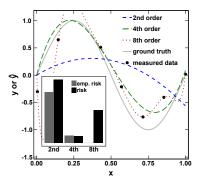
We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Empirical risk: error on training data

True risk: error over the whole domain



Conclusion

C2: Statistical learning and generalization

We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

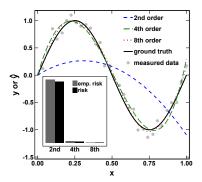
Let us use **polynomials** to estimate:

$$y(x) = \sin(2\pi x)$$

Empirical risk: error on training data

True risk: error over the whole domain

What happens if we add more data?



Case Study

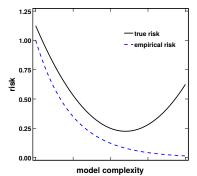
Conclusion

C2: Statistical learning and generalization

We need to understand how models can generalize, i.e. predict previously unseen data (or not). *Statistical learning theory* allows us to study this behaviour.

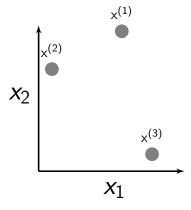
We cannot choose model complexity (hyperparameters, regularization) based on training data.

Cross-validation (and related techniques) must be used to compare models.



C3: Linear and nonlinear kernels

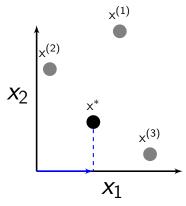
Linear models serve a tool to understand nonlinear models, regularization



linear model

C3: Linear and nonlinear kernels

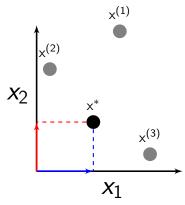
Linear models serve a tool to understand nonlinear models, regularization



linear model

C3: Linear and nonlinear kernels

Linear models serve a tool to understand nonlinear models, regularization

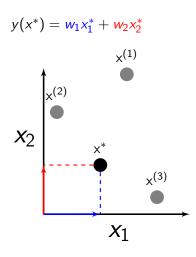


linear model

 Introduction
 Case Study
 Machine learning in chemisty
 Conclusion

 000000
 000000000
 00000000
 00

C3: Linear and nonlinear kernels

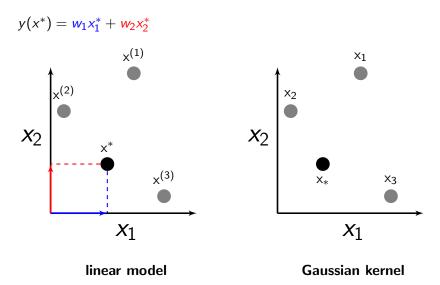


linear model

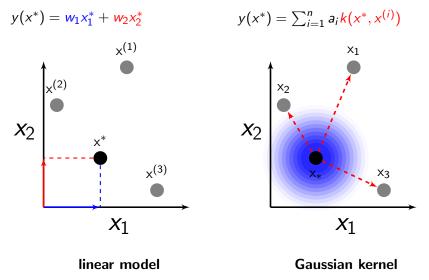
 Introduction
 Case Study
 Machine learning in chemisty
 Conclusion

 000000
 000000000
 00000000
 00

C3: Linear and nonlinear kernels



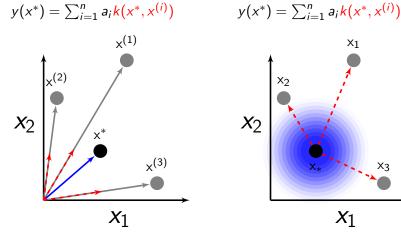
C3: Linear and nonlinear kernels



Case Study

Machine learning in chemisty 00000000

C3: Linear and nonlinear kernels



 X_1

 x_1

X3

Case Study

Machine learning in chemisty

Conclusion

C4: Representing chemical systems

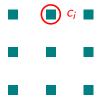
Chemical Space C_f

Case Study

Machine learning in chemisty

Conclusion 00

C4: Representing chemical systems



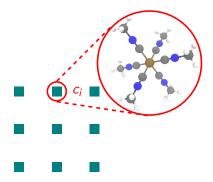
Chemical Space C_f

Case Study

Machine learning in chemisty

Conclusion

C4: Representing chemical systems



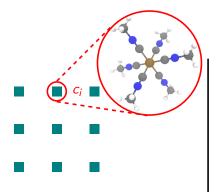
Chemical Space C_f

Case Study

Machine learning in chemisty

Conclusion

C4: Representing chemical systems



Chemical Space C_f

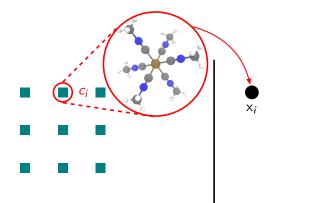
Descriptor Space $\mathcal{X} \subset \mathbb{R}^d$

Case Study

Machine learning in chemisty

Conclusion

C4: Representing chemical systems



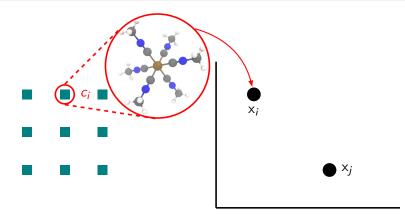
Chemical Space C_f

Descriptor Space $\mathcal{X} \subset \mathbb{R}^d$

Case Study

Machine learning in chemisty

C4: Representing chemical systems



Chemical Space C_f

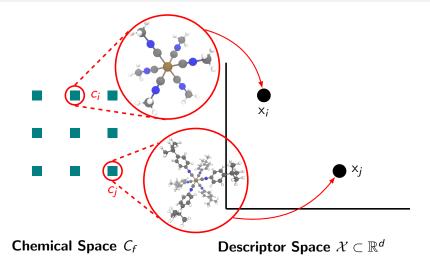
Descriptor Space $\mathcal{X} \subset \mathbb{R}^d$

Case Study

Machine learning in chemisty

Conclusion

C4: Representing chemical systems

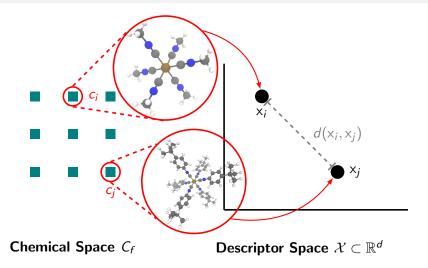


Case Study

Machine learning in chemisty

Conclusion 00

C4: Representing chemical systems

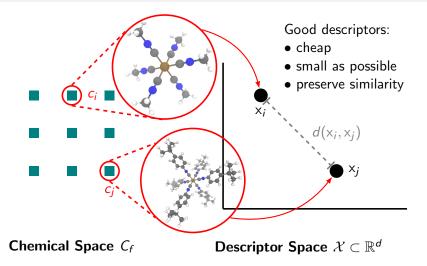


Case Study

Machine learning in chemisty

Conclusion

C4: Representing chemical systems



Case Study

Machine learning in chemisty ○○○○○○●○

C4: Types of representation

complexity

Case Study

Machine learning in chemisty

C4: Types of representation

complexity

Fingerprints

considerable use in drug design

 no information related to molecular topology

- cheap to compute

Case Study

Machine learning in chemisty

C4: Types of representation

Fingerprints

Graph-theoretic

- considerable use i	n
drug design	

 no information related to molecular topology

cheap to compute

 topological and topochemical representations

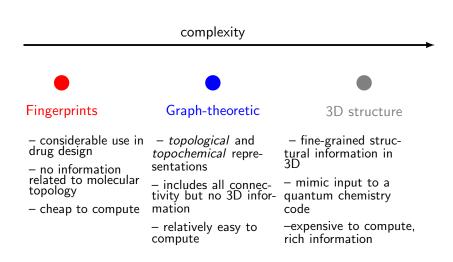
- includes all connectivity but no 3D information

- relatively easy to compute

Case Study

Machine learning in chemisty

C4: Types of representation

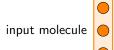


C5: How neural networks work

Simple neural networks can be understood as learned, continuous maps from the input space to a latent space, followed by linear regression

C5: How neural networks work

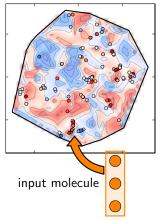
Simple neural networks can be understood as learned, continuous maps from the input space to a latent space, followed by linear regression



Case Study

Machine learning in chemisty ○○○○○○● Conclusion

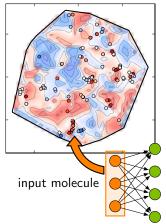
C5: How neural networks work



Case Study

Machine learning in chemisty ○○○○○○● Conclusion

C5: How neural networks work

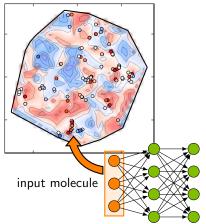


Case Study

Machine learning in chemisty ○○○○○○●

Conclusion

C5: How neural networks work

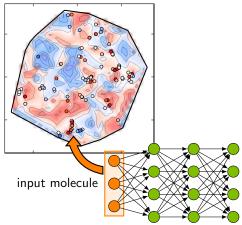


Case Study

Machine learning in chemisty ○○○○○○●

Conclusion

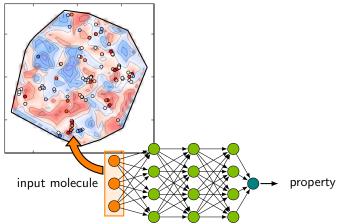
C5: How neural networks work



Case Study

Machine learning in chemisty ○○○○○○● Conclusion

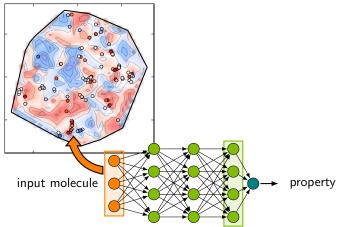
C5: How neural networks work



Case Study

Machine learning in chemisty ○○○○○○● Conclusion

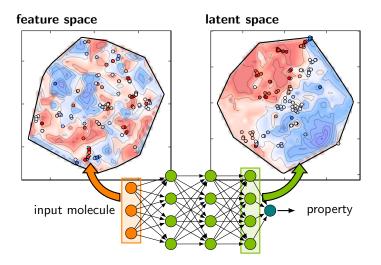
C5: How neural networks work



Case Study

Machine learning in chemisty ○○○○○○● Conclusion

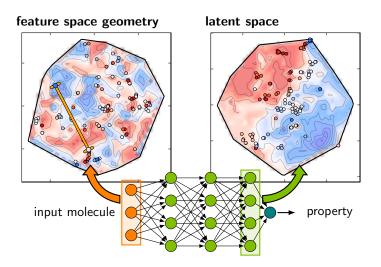
C5: How neural networks work



Case Study

Machine learning in chemisty ○○○○○○● Conclusion

C5: How neural networks work



Case Study

Machine learning in chemisty ○○○○○○● Conclusion

C5: How neural networks work

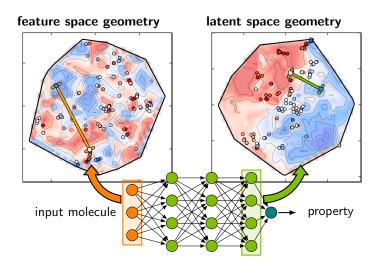


Table of Contents

Introduction

- 2 Case Study
 - Introduction
 - Multiobjective design with ML
 - Conclusions
- Machine learning in chemisty
 Outline
 - Chapter highlights

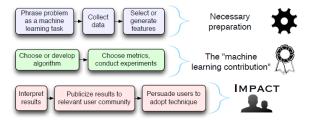
4 Conclusion

Introduction	Case Study	Machine learning in chemisty	Conclusion
000000	0000000000	00000000	○●
Final thoughts			

It is increasingly important to be literate about ML concepts. Even if/when the hype lessens, ML tools will continue to have a large impact on our science.

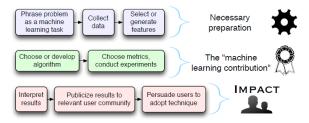
Final thoughts

It is increasingly important to be literate about ML concepts. Even if/when the hype lessens, ML tools will continue to have a large impact on our science.



Wagstaff, K., "Machine Learning that Matters", ICML 29, 16(7):529-536, 2012

It is increasingly important to be literate about ML concepts. Even if/when the hype lessens, ML tools will continue to have a large impact on our science.



Wagstaff, K., "Machine Learning that Matters", ICML 29, 16(7):529-536, 2012

Conversely, there is a growing need for domain experts to engage and derive impact from advances in ML, and you have a lot of value to contribute to interpreting and exploiting the results.